基于la―var模型的中国国债市场流动性风险研究

基于la―var模型的中国国债市场流动性风险研究

ID:17941966

大小:32.50 KB

页数:10页

时间:2018-09-11

基于la―var模型的中国国债市场流动性风险研究 _第1页
基于la―var模型的中国国债市场流动性风险研究 _第2页
基于la―var模型的中国国债市场流动性风险研究 _第3页
基于la―var模型的中国国债市场流动性风险研究 _第4页
基于la―var模型的中国国债市场流动性风险研究 _第5页
资源描述:

《基于la―var模型的中国国债市场流动性风险研究 》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、基于La―VaR模型的中国国债市场流动性风险研究  国债市场,是国债发行和流通市场的统称,是买卖国债的场所。中央银行通过在二级市场上买卖国债(直接买卖,国债回购、反回购交易)来进行公开市场操作,借此存吐基础货币,调节货币供应量和利率,实现财政政策和货币政策的有机结合。  摘要:本文基于La-VaR模型测度中国国债市场流动性风险,并选取2009―2015年上证国债指数为数据,采用GARCH-VaR模型和La-VaR模型度量国债市场所面临的流动性风险,分析La-VaR模型对我国国债市场流动性风险测度的有效性。结果表明:相对于传统的VaR模型,La-VaR模型能更好的测度国债市场的流动性风险,

2、且La-VaR模型的预测结果与国债市场的表现大致吻合,可对国债市场进行较好的预测。  关键词:国债市场;La-VaR模型;流动性风险  一、引言  Yamai(2000)通过考虑市场的流动性水平和投资者交易头寸大小对变现价值的影响把市场影响机制引入VaR模型中[16]。  从以往的研究结果来看,流动性风险的相关研究大都集中于股票市场,对于债券市场的流动性风险研究相对较少,而定位于国债市场的流动性风险研究则更是少之又少,本研究的创新之处在于:选取上证国债指数为样本,采用La-VaR模型(BDSS模型),研究基于我国国债市场的流动性风险测度问题。  二、模型设定与实证方法设计  (一)模型设

3、定  传统的VaR的定义,为在某一个既定的置信水平下,在特定的持有期内,资产组合可能会遭受的最大损失。对于传统的在险价值而言,侧重于衡量资产组合所面临的市场风险,并没有涵盖流动性风险在内,考虑到这一点,1999年,Bangia、Diebold、Schuermann、Stroughair提出了基于买卖价差的流动性风险模型――La-VaR模型,也就是BDSS模型。他们的基本思路为:在传统VaR模型的基础上加上了一个增量,这个增量也就是价差带来的流动性风险。  假设某资产当前的中间价格为S0,资产的对数收益率为,收益率rt代表的是资产真实价值给投资者带来的收益。Bangia等给出了未来1个持有

4、期内,置信水平为c,头寸为1单位的La-VaR的解析式,  由公式可知,BDSS模型实质上是将La-VaR模型具体分为了两个部分,其中S0[1-exp代表中间价格波动的风险,也就是我们所说的传统的VaR,而则代表以价差计算的流动性风险,由此便得到了La-VaR模型。Bangia等人针对卖出价与买入价的溢差的不定性做出了改进,但假设产品的卖出价与买入价的溢差的百分比分布相互独立,这种假设相对来说比较保守。  本文将在BDSS模型的基础之上,通过对流动性指标及其数据可得性进行分析,结合我国国债市场的实际情况,重新设定了买卖价差的定义。设定债券价格的开盘价Pk,收盘价Ps,最高价Ph,最低价P

5、t,价差S0则为最高价Ph与最低价Pt的差值,中间价格Pt=(Pk+Ps+Pt+Ph)/4,相对价差即为S=S0/Pt。  (二)实证方法设计  本文首先对时间序列数据进行平稳性检验及ARCH效应检验,在存在高阶ARCH效应的基础上采用四种GARCH模型对比估计时间序列的波动率,从中选出最优的GARCH模型并在此结果之上,使用模型构建法建立VaR模型与La-VaR模型。  三、实证分析  (一)数据  由于抽样选取债券样本有一定的难度且无法整体反应整个国债市场的流动性,本文决定选用债券指数来综合反应我国国债市场状况。选择标准有二,一则能较好的反映我国国债市场的整体情况;二则该指数需要在交

6、易日具有价格波动。综合以上两个标准,本文选择上证国债指数作为样本,该指数是上证指数系列的第一只债券指数,是以上海证券交易所上市的所有固定利率国债为样本,按照国债发行量加权而成,可以综合的反映我国国债市场整体变动状况。该指数采用的是派氏加权综合价格指数公式来进行计算,并以样本国债的发行量为权数进行加权①。  (二)数据基本分析  1、描述性统计及正态分布检验  以上证国债指数为数据,对其进行取对数并差分,得到收益率r,即  其中,Pt为上证国债指数第t日最后的收盘价,Pt-1为第t-1日最后的收盘价,其描述性统计结果如下:  2、聚集性检验  金融时间序列往往具有聚集性,从收益率r序列的时

7、序图中我们看到,收益率序列的聚集性明显,即每一次小幅度波动后面往往跟着的是较小幅度的波动,而每一次大幅度波动后面往往跟着的是较大的波动。数据的前半段与后半段形成鲜明对比,前半段整体呈现出较大波动,而后半段波动较小。  3、平稳性及相关性检验  采用ADF单位根检验法检验序列的平稳性,原假设为:序列存在单位根,即序列为非平稳序列。  结果显示:原假设不成立,序列不存在单位根,是平稳序列。  图3的数据为残差相关性检验结果,从图中可以看

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。