欢迎来到天天文库
浏览记录
ID:1776804
大小:306.50 KB
页数:4页
时间:2017-11-13
《向量与三角形内心、外心、重心、垂心知识的交汇》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、5d6d6eee25d861dfc7318e777ade62ba.doc3+X辅导向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合(1)是的重心.证法1:设是的重心.证法2:如图三点共线,且分为2:1是的重心(2)为的垂心.证明:如
2、图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.同理,为的垂心(3)设,,是三角形的三条边长,O是ABC的内心为的内心.证明:分别为方向上的单位向量,平分,),令45d6d6eee25d861dfc7318e777ade62ba.doc5d6d6eee25d861dfc7318e777ade62ba.doc3+X辅导()化简得(4)为的外心。典型例题:例1:是平面上一定点,是平面上不共线的三个点,动点满足,,则点的轨迹一定通过的()A.外心B.内心C.重心D.垂心分析:如图所示,分别为边的中
3、点.//点的轨迹一定通过的重心,即选.例2:(03全国理4)是平面上一定点,是平面上不共线的三个点,动点满足,,则点的轨迹一定通过的(B)A.外心B.内心C.重心D.垂心分析:分别为方向上的单位向量,平分,点的轨迹一定通过的内心,即选.例3:是平面上一定点,是平面上不共线的三个点,动点满足,,则点的轨迹一定通过45d6d6eee25d861dfc7318e777ade62ba.doc5d6d6eee25d861dfc7318e777ade62ba.doc3+X辅导的()A.外心B.内心C.重心D.垂心分析:如图所示
4、AD垂直BC,BE垂直AC,D、E是垂足.===+=0点的轨迹一定通过的垂心,即选.练习:1.已知三个顶点及平面内一点,满足,若实数满足:,则的值为()A.2B.C.3D.62.若的外接圆的圆心为O,半径为1,,则()A.B.0C.1D.3.点在内部且满足,则面积与凹四边形面积之比是()A.0B.C.D.4.的外接圆的圆心为O,若,则是的()A.外心B.内心C.重心D.垂心5.是平面上一定点,是平面上不共线的三个点,若,则是的()A.外心B.内心C.重心D.垂心6.的外接圆的圆心为O,两条边上的高的交点为H,,45
5、d6d6eee25d861dfc7318e777ade62ba.doc5d6d6eee25d861dfc7318e777ade62ba.doc3+X辅导则实数m=先将向量OB和向量OC相加,得到向量OD(向量OD过BC中点)然后证向量OD+向量OA=向量OH即证AHOD为平行四边形首先OD‖AH(都垂直BC)现在只要证AH=OD=2OE(E为OD和BC交点,即平行四边形OCDB的对角线交点)就成立了延长CO交圆O于F由于CF是直径,所以AF垂直AC,FB⊥BC又BH垂直AC,AH垂直BC∴AF‖BH,FB‖AH∴A
6、HBF是平行四边形AH=FB=2OE于是命题成立7.(06陕西)已知非零向量与满足(+)·=0且·=,则△ABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形8.已知三个顶点,若,则为()A.等腰三角形B.等腰直角三角形C.直角三角形D.既非等腰又非直角三角形练习答案:C、D、C、D、D、1、D、C45d6d6eee25d861dfc7318e777ade62ba.doc
此文档下载收益归作者所有