《概率论与数理统计》2-4

《概率论与数理统计》2-4

ID:17683734

大小:1.04 MB

页数:13页

时间:2018-09-04

《概率论与数理统计》2-4_第1页
《概率论与数理统计》2-4_第2页
《概率论与数理统计》2-4_第3页
《概率论与数理统计》2-4_第4页
《概率论与数理统计》2-4_第5页
资源描述:

《《概率论与数理统计》2-4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四节随机变量函数的分布在许多实际问题中,常需要考虑随机变量函数的分布.如在一些试验中,所关心的随机变量往往不能直接测量得到,而是某个能直接测量的随机变量的函数.在本节中,我们将讨论如何由已知的随机变量X的分布去求它的函数Y=f(X)分布.一、离散型随机变量函数的分布例1设随机变量X的分布律如下表,试求Y=(X-1)2的分布律.解Y所有可能取的值为0,1,4.由即得Y的分布律为例2设X服从参数为λ的泊松分布,试求Y=f(X)的分布列.其中解易知Y的可能取值为-1,0,1,且有二、连续型随机变量函数的分布求随机变量Y=2X+8的概率密度.例3设随机变量X具有概率

2、密度解先求Y=2X+8的分布函数FY(y).于是得Y=2X+8的概率密度为例4设随机变量X具有概率密度fX(x),-∞0时,有于是得Y的概率密度为解先根据Y与X的函数关系式求Y的分布函数从而解X的取值范围为(0,1),从而Y的取值范围为(1,3)当10(或g’(x)<0),

3、则Y=g(X)的概率密度为证明(略)例7设随机变量X具有概率密度求Y=lnX的概率密度.解柯西分布

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。