资源描述:
《2013高考数学(理)一轮复习教案:第九篇 解析几何第7讲 抛物线》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第7讲抛物线【2013年高考会这样考】1.考查抛物线定义、标准方程.2.考查抛物线的焦点弦问题.3.与向量知识交汇考查抛物线的定义、方程、性质等.【复习指导】熟练掌握抛物线的定义及四种不同的标准形式,会根据抛物线的标准方程研究得出几何性质及会由几何性质确定抛物线的标准方程;掌握代数知识,平面几何知识在解析几何中的作用.基础梳理1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.其数学表达式:
2、MF
3、=d(其中d为点M到准线的距
4、离).2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0x=0焦点FFFF离心率e=1准线方程x=-x=y=-y=范围x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R开口方向向右向左向上向下焦半径
5、PF
6、=x0+
7、PF
8、=-x0+
9、PF
10、=y0+
11、PF
12、=-y0+一个结论焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F的距离
13、PF
14、=x0+.两
15、种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).双基自测1.(人教A版教材习题改编)抛物线y2=8x的焦点到准线的距离是().A.1B.2C.4D.8解析由2p=8得p=4,即焦点到准线的距离为4.答案C2.(2012·金华模拟)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程
16、是().A.x2=-12yB.x2=12yC.y2=-12xD.y2=12x解析=3,∴p=6,∴x2=-12y.答案A3.(2011·陕西)设抛物线的顶点在原点,准线方程x=-2,则抛物线的方程是().A.y2=-8xB.y2=-4xC.y2=8xD.y2=4x解析由准线方程x=-2,顶点在原点,可得两条信息:①该抛物线焦点为F(2,0);②该抛物线的焦准距p=4.故所求抛物线方程为y2=8x.答案C4.(2012·西安月考)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是().A.4B
17、.6C.8D.12解析据已知抛物线方程可得其准线方程为x=-2,又由点P到y轴的距离为4,可得点P的横坐标xP=4,由抛物线定义可知点P到焦点的距离等于其到准线的距离,即
18、PF
19、=xP+=xP+2=4+2=6.答案B5.(2012·长春模拟)抛物线y2=8x的焦点坐标是________.解析∵抛物线方程为y2=8x,∴2p=8,即p=4.∴焦点坐标为(2,0).答案(2,0)考向一抛物线的定义及其应用【例1】►(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,
20、AF
21、+
22、BF
23、=3,则线段
24、AB的中点到y轴的距离为().A.B.1C.D.[审题视点]由抛物线定义将
25、AF
26、+
27、BF
28、转化为线段AB的中点到准线的距离即可.解析设抛物线的准线为l,作AA1⊥l于A1,BB1⊥l于B1,由抛物线的定义知
29、AA1
30、+
31、BB1
32、=
33、AF
34、+
35、BF
36、=3,则AB的中点到y轴的距离为(
37、AA1
38、+
39、BB1
40、)-=.答案C涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.【训练1】(2011·济南模拟)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)
41、的距离与点P到该抛物线准线的距离之和的最小值为().A.B.3C.D.解析由抛物线的定义知,点P到该抛物线的距离等于点P到其焦点的距离,因此点P到点(0,2)的距离与点P到该抛物线准线的距离之和即为点P到点(0,2)的距离与点P到焦点的距离之和,显然,当P、F、(0,2)三点共线时,距离之和取得最小值,最小值等于=.答案A考向二抛物线的标准方程及性质【例2】►(1)(2011·南京模拟)以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程为________.(2)(2010·浙江)设抛物线y2=2p
42、x(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.[审题视点](1)为求抛物线的方程问题,用待定系数法求解,根据题设条件,按焦点所在位置的可能情况,分类讨论.(2)抓住FA的中点B在抛物线上,求出p.解析(1)由于点P在第三象限.①当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)