高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理

高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理

ID:17376632

大小:437.50 KB

页数:12页

时间:2018-08-30

高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理_第1页
高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理_第2页
高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理_第3页
高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理_第4页
高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理_第5页
资源描述:

《高中数学北师大版选修2-3同步导学案:1.5.1+二项式定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§5 二项式定理5.1 二项式定理1.能用计数原理证明二项式定理.(难点)2.会用二项式定理解决与二项展开式有关的简单问题.(难点)[基础·初探]教材整理 二项式定理阅读教材P23~P24“例1”以上部分,完成下列问题.1.二项式定理:(a+b)n=_________________________________________.【答案】 Can+Can-1b+…+Can-rbr+…+Cbn2.二项式系数:__________________________________________________.【答案

2、】 C(r=0,1,2,…,n)3.二项式通项:______,即二项展开式的第______项.【答案】 Can-rbr r+14.在二项式定理中,如果设a=1,b=x,则得到公式:(1+x)n=________________________.【答案】 1+Cx+Cx2+…+Cxr+…+xn判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项.(  )(2)在公式中,交换a,b的顺序对各项没有影响.(  )(3)Can-kbk是(a+b)n展开式中的第k项.(  )(4)(a-b)n与(a+b)

3、n的二项式展开式的二项式系数相同.(  )【解析】 (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Can-kbk和(b+a)n的展开式的第k+1项Cbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Can-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是C.【答案】 (1)× (2)× (3)× (4)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解

4、惑: 疑问3: 解惑: [小组合作型]二项式定理的正用、逆用 (1)用二项式定理展开5;(2)化简:C(x+1)n-C(x+1)n-1+C(x+1)n-2-…+(-1)kC(x+1)n-k+…+(-1)nC.【精彩点拨】 (1)二项式的指数为5,且为两项的和,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.【自主解答】 (1)5=C(2x)5+C(2x)4·+…+C5=32x5-120x2+-+-.(2)原式=C(x+1)n+C(x+1)n-1(-1)+C(x+1)n-2(

5、-1)2+…+C(x+1)n-k(-1)k+…+C(-1)n=[(x+1)+(-1)]n=xn.1.展开二项式可以按照二项式定理进行.展开时注意二项式定理的结构特征,准确理解二项式的特点是展开二项式的前提条件.2.对较复杂的二项式,有时先化简再展开会更简便.3.对于化简多个式子的和时,可以考虑二项式定理的逆用.对于这类问题的求解,要熟悉公式的特点、项数,各项幂指数的规律以及各项的系数.[再练一题]1.(1)求4的展开式;(2)化简:1+2C+4C+…+2nC.【解】 (1)法一:4=C(3)4+C(3)3·+C(3

6、)2·2+C(3)3+C4=81x2+108x+54++.法二:4==(81x4+108x3+54x2+12x+1)=81x2+108x+54++.(2)原式=1+2C+22C+…+2nC=(1+2)n=3n.二项式系数与项的系数问题 (1)求二项式6的展开式中第6项的二项式系数和第6项的系数;(2)求9的展开式中x3的系数.【精彩点拨】 利用二项式定理求展开式中的某一项,可以通过二项展开式的通项公式进行求解.【自主解答】 (1)由已知得二项展开式的通项为Tr+1=C(2)6-r·r=(-1)rC·26-r·,∴T

7、6=-12·.∴第6项的二项式系数为C=6,第6项的系数为C·(-1)·2=-12.(2)Tr+1=Cx9-r·r=(-1)r·C·x9-2r,∴9-2r=3,∴r=3,即展开式中第四项含x3,其系数为(-1)3·C=-84.1.二项式系数都是组合数C(r∈{0,1,2,…,n}),它与二项展开式中某一项的系数不一定相等,要注意区分“二项式系数”与二项式展开式中“项的系数”这两个概念.2.第r+1项的系数是此项字母前的数连同符号,而此项的二项式系数为C.例如,在(1+2x)7的展开式中,第四项是T4=C17-3(2

8、x)3,其二项式系数是C=35,而第四项的系数是C23=280.[再练一题]2.(1)(2015·安徽高考)7的展开式中x5的系数是________.(用数字填写答案)(2)二项式6的展开式中的常数项为________.【解析】 (1)Tr+1=C·(x3)7-rr=Cx21-4r,令21-4r=5,得r=4,C=35.故展开式中x5的系数为35.(2)Tr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。