欢迎来到天天文库
浏览记录
ID:16481140
大小:5.50 MB
页数:23页
时间:2018-08-10
《遥感图像的监督分类与处理_赵文彪》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、杭州师范大学遥感图像的监督分类和处理实验杭州师范大学《遥感原理与应用》实验报告题目:遥感图像的监督分类与处理实验姓名:赵文彪学号:2014212425班级:地信141学院:理学院23杭州师范大学遥感图像的监督分类和处理实验1实验目的运用envi软件对自己家乡的遥感影像经行分类和分类后操作。2概述分类方法:监督分类和非监督分类监督分类——从遥感数据中找到能够代表已知地面覆盖类型的均质样本区域(训练样区),然后用这些已知区域的光谱特征(包括均值、标准差、协方差矩阵和相关矩阵等)来训练分类算法,完成影像剩余部分的地面覆
2、盖制图(将训练样区外的每个像元划分到具有最大相似性的类别中)。非监督分类——依据一些统计判别准则将具有相似光谱特征的像元组分分为特定的光谱类;然后,再对这些光谱类进行标识并合并成信息类。光谱特征空间同名地物点在丌同波段图像中亮度的观测量将构成一个多维的随机向量X,称为光谱特征向量。而这些向量在直角坐标系中分布的情况为光谱特征空间。同类地物在光谱特征空间中不可能是一个点,而是形成一个相对聚集的点群。丌同地物的点群在特征空间内一般具有不同的分布。特征点集群的分布情况:§理想情况:至少在一个子空间中可以相互区分§典型情
3、况:任一子空间都有相互重叠,总的特征空间可以区分§一般情况:任一子空间都存在重叠现象监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。在分类乊前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决凼数迚行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决凼数去对其他待分数据迚行分类。使每个像元和训练样本做比较,按不同的规则将其划分到和其最相似的样本类,以
4、此完成对整个图像的分类。3实验步骤3.1遥感影像图的剪切用envi打开下载的遥感影像图,剪切出一个地貌信息丰富的区域(因为一景遥感影像太大,分类时间较长,故而采用剪切的方法,剪切一个地貌丰富的遥感影像图。既便于分类也使得分类种数不至于减小的太多)以下为剪切出来的遥感影像23杭州师范大学遥感图像的监督分类和处理实验1.1类别定义/特征判别用envi打开剪切后的影像图,判断可分辨地物为:裸土地、村庄、林地、河流湖泊、城市及城市道路和其他六类。1.2样本选择在管理图层layermanager中、剪切区.dat图层右键选
5、择Newregionofinterest(新建感兴趣区)打开RegionofInterest(ROI)Tool面板,开始选择样本。在RegionofInterest(ROI)Tool面板上,设置以下参数:ROIName(感兴趣区名字)ROIColor(感兴趣区颜色)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择CompleteandAcceptPolygon,完成一个多边形样本的选择;完成裸土地、村庄、林地、河流湖泊、城
6、市及城市道路和其他六类感兴趣区的分类如图:23杭州师范大学遥感图像的监督分类和处理实验1.1计算样本的可分离性。计算样本的可分离性。在RegionofInterest(ROI)Tool面板上,选择Option>ComputeROISeparability,在ChooseROIs面板,将几类样本都打勾,点击OK;表示各个样本类型间的可分离性,用Jeffries-Matusita,TransformedDivergence参数表示,这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1
7、.8,需要编辑样本或者重新选择样本;小于1,考虑将两类样本合成一类样本。从如下图可知,分类良好,不需要合并。23杭州师范大学遥感图像的监督分类和处理实验在图层管理器中,选择Regionofinterest,点击右键,saveas,保存为.xml格式的样本文件。23杭州师范大学遥感图像的监督分类和处理实验1.1分类器选择平行管道法(Parallelepiped)平行管道法聚类分析:以地物的光谱特性曲线为基础,假定同类地物的光谱特性曲线相似作为判决的标准,设置一个相似阈值,这样,同类地物在特征空间上表现为以特征曲线为
8、中心,以相似阈值为半径的管子,此即为所谓的“平行管道”最小距离(MinimumDistance):利用训练样本数据计算出每一类的均值向量和标准差向量,然后以均值向量作为该类在特征空间中的中心位置,计算输入图像中每个像元到各类中心的距离,到哪一类中心的距离最小,该像元就归入到哪一类。最大似然分类算法(MaximumLikelihood)前面的分类器主要是根据距离测度进行判别
此文档下载收益归作者所有