欢迎来到天天文库
浏览记录
ID:16014001
大小:106.50 KB
页数:8页
时间:2018-08-07
《圆的标准方程教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、圆的标准方程教学设计王会群一、教材分析1.教学内容普通高中课程标准实验教科书《数学》必修2第二章平面解析几何初步中2﹒2节圆与方程。本节主要研究圆的方程,直线与圆的位置关系,圆与圆的位置关系,以及他们在生活中的简单运用。2.教材的地位与作用圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论为后继学习作好准备。同时有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。应此教学中应加强练习,使学生确实掌握这单元的知识和方法。初中教
2、材中对圆的内容降低最低要求。本课是单元的第一课,和直线方程一样,教学中先设计一个问题情景,让学生讨论,并引导学生观察圆上点在运动时,不变的是什么,抓住圆的本质,突破难点。3.三维目标(1)知识与技能A.掌握圆的标准方程,并根据方程写出圆的坐标和圆的半径。B.会选择适当的坐标系来解决与圆有关的实际问题。(2)过程与方法A.实际问题引入,师生共同探讨。B.探究曲线方程的基本方法。(3)情感态度与价值观培养用坐标法研究几何问题的兴趣。4.教学重点圆的标准方程及运用5.教学难点求圆的标准方程的条件的确定。二.教法分析高一学生,在老师的引导下,已经具
3、备一定探究与研究问题的能力。所以在设计问题时应考虑周全和灵活性,采用启发式探索式教学,师生共同探讨,共同研究,让学生积极思考,主动学习。在教学过程中采用讨论法,向学生提供具备启发式和思考性的问题。因此,要求学生在课上讨论,提高学生的探索,推理,想象,分析和总结归纳等方面的能力。三.学法分析从高考发展的趋势看,高考越来重视学生的分析问题解决问题的能力。因此,要求学生在学习中遇到问题时,不要急于求成,而要根据问题提供的信息回忆所学知识,采用转化思想,数形结合的思想,选择最佳方案加以解决“瞎撞,乱撞”的不良思想。四.教学过程项目具体内容教师活动学
4、生活动教学意图复习复习上节课内容,思考一下几个问题什么是直线方程?确定直线方程的要素有哪些?直线方程有哪几种表达式,都是什么样的?教师提问。复习直线的方程形式,帮助同学去联想圆的方程引入新课上节课我们已经学过直线方程的概念,直线斜率及直线方程的常见表达式,我们知道了关于x,y的二元一次方程都表示一条直线,那么曲线方程会有怎样的表达式呢?这节课让我们一起来学习最常见的曲线----圆的方程的第一节圆的标准方程。一、新课引入同学们在初中的时候就已经初步了解了圆的有关知识,那么哪一位同学来回答圆的概念?X,似是的,平面内到一定点距离等于定长的点的轨
5、迹称为圆。定点是圆心,定长是圆的半径。圆心和半径分别确定了圆的位置和大小.现在我们求以C(a,b)为圆心,r为半径的圆的方程 首先我们建立一个直角坐标系,设点M(x,y)是圆上任意一点,那点M在圆上的条件是
6、MC
7、=r,那么由我们已经学过的两点间的距离公式,所说条件可以转化为方程表示:将上式两边平方得:(x-a)2+(y-b)2=r2.(1)显然,圆上任意一点M的坐标(x,y)适合方程(1);如果平面上一点M的坐标(x,y)适合方程(1),可得
8、MC
9、=r,则点M在圆上。所以方程(1)是以C(a,b)为圆心、r为半径的圆的方程.我们把它叫做
10、圆的标准方程.那同学们观察一下圆的标准方程形式有什教师在黑板上引导启发同学们一起建立圆的标准方程,加深学生学习印象。么特点?思考一下当圆心在原点时,x轴上,y轴上时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.且当圆心在原点即C(0,0)时,方程为x2+y2=r2圆心在轴上时:圆心在轴上时:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a
11、、b、r,可以根据条件,利用待定系数法来解决.口头练习1说出下列圆的圆心和半径:(1)(x-3)2+(y-2)2=5;(2)x2+(y-5)2=8;(3)(x+2)2+y2=m2(m≠0)总结:已知圆的标准方程,要能够熟练地求出它的圆心和半径.2、说出下列圆的方程:(1)圆心在原点,半径为3.(2)圆心在点C(3,-4),半径为7.(3)圆心在点C(3,,0).且与y轴相切。总结:根据圆心坐标、半径长熟练地写出圆的标准方程.容易看出,如果点M。(x。,y。)在圆外,则点到圆心的距离大于圆的半径r,即如果点M。(x。,y。)在圆内,则点到圆心
12、的距离小于圆的半径r,即当然我们刚才做的练习题都是比较简单的,那当遇到比较复杂的条件时,我们怎么来确定圆的标准方程呢?我们来做下面的一道题。例1写出圆心为A(2,-3)半径长等于
此文档下载收益归作者所有