资源描述:
《2019年高考数学(文)一轮复习第10章 概率 第2节 古典概型学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版2019届高考数学一轮复习学案第二节 古典概型[考纲传真] 1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率.(对应学生用书第151页)[基础知识填充]1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每个基本事件出现的可能性相等.3.古典概型的概率公式P(A)==.[基本能力自测]1.
2、(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( )(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )[答案] (1)× (2)× (3)√ (4)×2.(教材改编)下列试验中,
3、是古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.3B [由古典概型的意义和特点知,只有③是古典概型.]8北师大版2019届高考数学一轮复习学案3.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一
4、次密码能够成功开机的概率是( )【导学号:00090351】A.B.C.D.C [∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P=.]4.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.B.C.D.C [从1,2,3
5、,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选C.]5.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________. [甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.
6、而同色的有(红,红),(白,白),(蓝,蓝),共3种.所以所求概率P==.](对应学生用书第151页)简单古典概型的概率 (1)(2017·全国卷Ⅱ8北师大版2019届高考数学一轮复习学案)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B.C.D.(2)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.B.C.D.(1
7、)D (2)C [(1)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P==.故选D.(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P==,故选C.][规律方法] 1.计算古典概型事件的概率可分三步,(1)计算基本
8、事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率P.2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.[变式训练1] (1)从正方形四个顶