欢迎来到天天文库
浏览记录
ID:15831671
大小:593.50 KB
页数:17页
时间:2018-08-06
《论文 浅谈导数的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浅谈导数的应用摘要:法国数学家费马为研究极值问题而引入了导数的思想,导数是我们进一步学习数学和其他自然科学的基础,是研究现代科学技术中必不可少的工具.我们要明确导数的内涵,知道运用导数思想解题的方法,从而通过提出问题的数学特征,建立导数关系的数学模型.一般地,导数思想是从构造函数利用导数函数的性质,解决不同类型的问题,导数思想在中学数学、高等数学以及我们日常生活中占有极其重要的地位,本文详细介绍导数思想的内涵和本质,使人们对导数的内容有更深的理解,以便在遇到各种问题时能够考虑到导数思想,从而优化解决问题的过程.关键词:极限;导数;微分1
2、6ShallowlyDiscussestheApplicationofDerivativeAbstract:Tostudyextremelyproblems,FrenchmathematicianFermatbroughtinderivativeidea.Derivativeisthebasisforustolearnmathandothernaturalsciencefurther,anindispensabletoolinresearchofmodernscienceandtechnology.Weshouldunderstandt
3、heconceptandacquirethecapacityofsolvingproblemswithmathematicalideasandcreatederivativemodelaccordingtothemathematicalfeatureofthegivenproblem.Onaverage,weusespecificderivativeinaccordancewithdefinitetraitofthevariousproblems.Thederivativeideaplaysanimportantpartinmiddle
4、schoolmath,advancedmathandourdailylife.Inthischapter,theconceptandessenceofderivativeareintroducedtodeepenpeople'sunderstandinginmathandhelptosimplifypeople'sderivative.Keywords:Limit;Derivative;Differential160引言导数来源于人类的社会实践,服务于人类的社会实践,导数是人类进一步学习数学和其他自然科学的基础,用导数来研究函数的性质,
5、是研究现代科学技术中必不可少的工具.导数是在极限概念的基础上建立起来的,是微分学的一个重要概念,也是一个重要的解题方法.学习导数知识可以在实际应用中快速简洁的求曲线的切线方程.导数还是对函数图像与性质的总结和概括,是研究函数单调性的最佳的重要工具,是初等数学和高等数学的重要衔接点.导数还可以解决生产和生活中的最优决策和最优设计问题,即最大值、最小值问题.1导数的产生和发展导数概念是根据解决实际问题的需要,在极限的基础上建立起来的,它是微分学中最重要的概念.而微分是微分学中又一个重要的概念,它与导数有密切的关系,两者在科学技术中有着广泛的
6、应用.我们知道在一定条件下一个函数在某点可导和可微是等价的,大部分高等数学、经济数学和数学分析课本中都是先引进导数的概念,再引进微分的概念,到底导数和微分这两个概念,哪个概念产生在前,哪个概念产生在后呢?1.1微分概念的导出背景16当一个函数的自变量有微小的改变时,它的因变量一般来说也会有一个相应的改变.微分的原始思想在于寻找一种方法,当因变量的改变也是很微小的时候,能够简便而又比较精确的估计出这个改变量.我们来看一个简单的例子:维持物体围绕地球作永不着地(理论上)的飞行所需要的最低速度称为第一宇宙速度.在中学里利用计算向心加速度的方法
7、已经求出这种速度为7.9千米/秒,现在我们改用另一种思路去推导它.设卫星当前时刻在地球表面附近的点沿着水平方向飞行,假如没有外力影响的话,那么它在一秒钟后本应到达点,但事实上它要受到地球的引力,因而实际到达的而是点.=4.9米是自由落体的物体在重力加速度的作用下,第一秒中所走过的距离.容易看出,如果点与地心的距离是相等的,那么由运动的独立性原理,就可以推断出卫星在沿着地球的一个同心圆轨道运行,也就是作环绕地球飞行了.因此,卫星应具有的最小飞行速度恰好在线段的长度.是直角三角形,和可近似的取为地球的平均半径6371千米,也就是637100
8、0米,于是由勾股定理即可求其加速度.1.2产生导数的实际背景从数学的发展历史来看,导数是伴随微分的诞生而顺理成章的产生的.也就是说,人们先有了微分的概念,随后才发现,对于处理微分问题来说,像这么一种特定形式
此文档下载收益归作者所有