2010届广东省韶关市高三四校第一次调研

2010届广东省韶关市高三四校第一次调研

ID:15797193

大小:32.50 KB

页数:9页

时间:2018-08-05

2010届广东省韶关市高三四校第一次调研_第1页
2010届广东省韶关市高三四校第一次调研_第2页
2010届广东省韶关市高三四校第一次调研_第3页
2010届广东省韶关市高三四校第一次调研_第4页
2010届广东省韶关市高三四校第一次调研_第5页
资源描述:

《2010届广东省韶关市高三四校第一次调研》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2010届广东省韶关市高三四校第一次调研2010届广东省韶关市高三四校第一次调研   韶关一中九十七中七中实验中学数学试卷(理科)考生注意:  1.答卷前,考生务必将姓名、高考座位号、校验码等填写清楚.  2.本试卷共有22道试题,满分150分.考试时间120分钟.一.填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每题填对得4分,否则一律得零分.1..【答案】【解析】略2.不等式的解集为.【答案】【解析】由于,所以,所以,所以.3.设M是椭圆上的动点,和分别是椭圆的左、右顶点,则的

2、最小值等于.【答案】【解析】设,则,显然当时,取最小值为.4.设是定义在R上的奇函数,且,,则   .【答案】【解析】本题关键"寻规律,找周期".    由得,;;;,......显然的周期为,所以.5.将一个钢球置于由6根长度为m(应该是)的钢管焊接成的正四面体的钢架内,那么,这个钢球的最大体积为 .【答案】【解析】设正四面体为,设点P在底面上的射影为、球心为O、正四面体的边长和高分别为。由于钢球体积最大时与四个面都相切。由题设点P在底面中的射影必是底面的中心。显然O将正四面体分割为四个体积相同的

3、正四面体,所以有,容易求得,代入可求得。所以钢球的最大体积为。6.化简:.【答案】【详解】(方法一):利用"两角和公式"直接求解;   (方法二):         .7.已知是双曲线右支上的一点,双曲线的一条渐近线方程为.设分别为双曲线的左、右焦点.若,则   .【答案】5【详解】由双曲线的一条渐近线方程为可得:,又双曲线的定义知    .8.已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如右图所示,则该凸多面体的体积.【答案】【详解】凸多面体为:下半部分为正方体,上半部分为正四棱锥.9

4、.已知无穷数列前项和,则数列的各项和为.【答案】【详解】 由可得:,两式相减得并化简:,    又.所以.10.古代"五行"学说认为:"物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金."将五种不同属性的物质任意排成一列,设事件表示"排列中属性相克的两种物质不相邻",则事件出现的概率是(结果用数值表示).【答案】【详解】如下图,当左边的位置排定后(例如:金),第二位(除去金本身)只有"土、水"两种属性。第二位排定后,其他三种属性也确定。故有,金土火木水  所以事件出现的概率是

5、。例如:(也可用列举法)。11.已知;(是正整数),令,,.某人用右图分析得到恒等式:,则.【答案】【详解】由图中的面积可得    所以.12.已知,直线:和.设是上与两点距离平方和最小的点,则△的面积是.【答案】【详解】(图略)设.由题设点到两点的距离和为.显然当即时,点到两点的距离和最小.  同理,所以.二.选择题(本大题满分16分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,否则一律得零分.13.已知向量,若,则等于  

6、A. B.C.D.【答案】C14.已知椭圆,长轴在轴上.若焦距为,则等于  A.4B.5C.7D.8【答案】D【详解】将椭圆的方程转化为标准形式为,显然,即.,解得.15.已知函数定义在上,,则"均为奇函数"是"为偶函数"的  A.充分不必要条件      B.必要不充分条件  C.充要条件         D.既不充分也不必要条件【答案】A16.已知,且为虚数单位,则的最小值是  A.2B.3C.4D.5【答案】B【详解】数形结合法.设,满足的点均在以为圆心,以1为半径的圆上.所以的最小值是连线的

7、长为3.三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.17.(本题满分12分)  已知,求的值.【详解】原式.......5分  又,∴,......9分  ∴.......12分18.(本题满分12分)  在平面直角坐标系中,分别为直线与轴的交点,为的中点.若抛物线过点,求焦点到直线的距离.【详解】由已知可得,......3分  解得抛物线方程为.......6分  于是焦点.......9分  ∴点到直线的距离为.......12分19.(本题满分14分)本题共有

8、2个小题,第1小题满分6分,第2小题满分8分.  已知函数.  (1)求证:函数在内单调递增;  (2)记为函数的反函数.若关于的方程在上有解,求的取值范围.【详解】(1)任取,则,    ∵,∴,∴,    ∴,即函数在内单调递增.......6分  (2)∵,......9分  [解法一] ∴    ......11分    当时,,∴    ∴的取值范围是.......14分  [解法二]解方程,得......11分    ∵,∴,解得    ∴的取值范围是..

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。