微积分在生活中的应用 微积分在实际中的应用

微积分在生活中的应用 微积分在实际中的应用

ID:15667782

大小:30.00 KB

页数:9页

时间:2018-08-04

微积分在生活中的应用 微积分在实际中的应用_第1页
微积分在生活中的应用 微积分在实际中的应用_第2页
微积分在生活中的应用 微积分在实际中的应用_第3页
微积分在生活中的应用 微积分在实际中的应用_第4页
微积分在生活中的应用 微积分在实际中的应用_第5页
资源描述:

《微积分在生活中的应用 微积分在实际中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、微积分在生活中的应用微积分在实际中的应用9微积分在生活中的应用微积分在实际中的应用9微积分在生活中的应用微积分在实际中的应用9微积分在实际中的应用一、微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供

2、一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。二、微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家

3、、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中提及割圆术“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣”9用正多边形来逼近圆周。这是极限论思想的成功运用。他的极限思想和无穷小方法,也

4、是世界古代极限思想的深刻体现。虽然最后是欧洲人真正的研究和完成了微积分的创立工作,但中国古代数学对于微积分的出色工作也是不可忽视的。从刘徽对圆锥、圆台、圆柱的体积公式的证明到14世纪初弧矢割圆术、组合数学、计算技术改革和珠算等数学史上的重要成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。意大利数学家卡瓦列利在1635

5、年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。三、解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。9到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。他不仅用坐标表示点的位置,而且把点的坐

6、标运用到曲线上。他认为点移动成线,所以方程不仅可表示已知数与未知数之间的关系,表示变量与变量之间的关系,还可以表示曲线,于是方程与曲线之间建立起对应关系。此外,笛卡尔打破了表示体积面积及长度的量之间不可相加减的束缚。于是几何图形各种量之间可以化为代数量之间的关系,使得几何与代数在数量上统一了起来。笛卡尔就这样把相互对立着的“数”与“形”统一起来,从而实现了数学史的一次飞跃,而且更重要的是它为微积分的成熟提供了必要的条件,从而开拓了变量数学的广阔空间。四、牛顿的“流数术”数学史的另一次飞跃就是研究“形”的变化。17世纪生产力的发展推动了自然科学和技术的发展,不但已

7、有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家牛顿(1642~1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,

8、因而他把时间作为自变量,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。