欢迎来到天天文库
浏览记录
ID:15652287
大小:285.00 KB
页数:7页
时间:2018-08-04
《2012中考数学旋转专题提高训练及答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、图形的旋转专题提高训练1、如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为( )ADBCEFMA.5:3B.3:5C.4:3D.3:42、如图,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A.B.C.D.13、
2、将直角边长为5cm的等腰直角ΔABC绕点A逆时针旋转15°后,得到ΔAB’C’,则图中阴影部分的面积是cm24、在矩形中,,是的中点,一块三角板的直角顶点与点重合,将三角板绕点按顺时针方向旋转.当三角板的两直角边与分别交于点时,观察或测量与的长度,你能得到什么结论?并证明你的结论.7NCDEAMB(4题图)F5、在矩形ABCD中,AB=2,AD=.(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;(3分)(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.①求证:点B平分线段AF;(3分)②△PAE
3、能否由△PFB绕P点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.(4分)6、含30°角的直角三角板ABC(∠B=30°)绕直角顶点C沿逆时针方向旋转角(),再沿的对边翻折得到,与交于点,与交于点,与相交于点.(1)求证:.(2)当时,找出与的数量关系,并加以说明.7EBMACN7、如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,(1)判断线段BQ与CP的数量关系,并证明你的结论。(2)若将点P移到等腰三角形ABC之外,
4、原题中的条件不变,线段BQ与CP的数量关系是否仍然成立,请你就图②给出证明.图①图②(线段的旋转)78、已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.当绕点旋转到时(如图1),易证.(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.BBMBCNCNMCNM图1图2图3AAADDD(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.(角的转)9、已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F
5、.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形?并说明理由.(图形的转)7图形的旋转部分习题答案:1、C2、BEABDC【解析】本题考查了三角形相似、三角形旋转。由于Rt△ABC≌Rt△DEC,∠E=30°所以∠B=30°,AC=1,所以AB=2,BC=,又△DMN为等边三角形时,AM的值为。3、【答案】4、【答案】:BM=CN。过点E作EF⊥BC,可得四边形ABFE是正方形,所以AE=EF,∠A=∠EFN.又因为∠AEF=MEN=90°,所以△AEM≌
6、△FEN,所以AM=FN,又因为AB=FC,所以BM=CN.点评:证明全等三角形是证明线段和角相等的方法之一,本题需要添加辅助线构建全等三角形.5、【答案】(1)当E为CD中点时,EB平分∠AEC。由∠D=90°,DE=1,AD=,推得∠DEA=60°,同理,∠CEB=60°,从而∠AEB=∠CEB=60°,即EB平分∠AEC。(2)①∵CE∥BF,∴==∴BF=2CE。∵AB=2CE,∴点B平分线段AF②能。证明:∵CP=,CE=1,∠C=90°,∴EP=。在Rt△ADE中,AE==2,∴AE=BF,又∵PB=,∴PB=PE∵∠
7、AEP=∠BP=90°,∴△PAS≌△PFB。∴△PAE可以△PFB按照顺时针方向绕P点旋转而得到。旋转度数为120°。【解析】本题综合考查学生三角形相似及全等、矩形性质、勾股定理、旋转等等几何知识的应用。(1)发散思维的考查,让学生自己找满足条件的点,并说明理由。题目中给出AB=2,7AD=,发现满足条件的点为AB的中点;利用三角函数的知识,及平角为180度,很容易得到结论。(2)①应用相似三角形的知识得BF=2CE,且AB=2CE,所以点B平分线段AF。(3)问:△PAE能否由△PFB绕P点按顺时针方向旋转而得到,即证明:△P
8、AE和△PFB是否全等。6、答案:(1) 证明:∵∠A=∠A′ AC=A′C ∠ACM=∠A′CN=900-∠MCN∴(2)在Rt△ABC中∵,∴∠A=900-300=600 又∵,∴∠MCN=300,∴∠ACM=900-∠MCN=600∴∠E
此文档下载收益归作者所有