2012届高考数学第一轮数列的应用专项复习教案

2012届高考数学第一轮数列的应用专项复习教案

ID:1564038

大小:33.50 KB

页数:13页

时间:2017-11-12

2012届高考数学第一轮数列的应用专项复习教案_第1页
2012届高考数学第一轮数列的应用专项复习教案_第2页
2012届高考数学第一轮数列的应用专项复习教案_第3页
2012届高考数学第一轮数列的应用专项复习教案_第4页
2012届高考数学第一轮数列的应用专项复习教案_第5页
资源描述:

《2012届高考数学第一轮数列的应用专项复习教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2012届高考数学第一轮数列的应用专项复习教案3数列的应用●知识梳理1实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常通过数列知识加以解决2理解“复利”的概念,注意分期付款因方式的不同抽象出的数列模型也不同3实际问题转化成数列问题,首先要弄清首项、公差(或公比),其次是弄清是求某一项还是求某些项的和的问题●点击双基1已知{an}是递增的数列,且对于任意n∈N*,都有an=n2+λn成立,则实数λ的取值范围是Aλ>02012届高考数学第一轮数列的应用专项复习教案3数列的应用●知识梳理1实际生活中的银行利率、企业股金、产品利润、人口增长

2、、工作效率、浓度问题等常常通过数列知识加以解决2理解“复利”的概念,注意分期付款因方式的不同抽象出的数列模型也不同3实际问题转化成数列问题,首先要弄清首项、公差(或公比),其次是弄清是求某一项还是求某些项的和的问题●点击双基1已知{an}是递增的数列,且对于任意n∈N*,都有an=n2+λn成立,则实数λ的取值范围是Aλ>0Bλ<0λ=0Dλ>-3解析:由题意知an<an+1恒成立,即2n+1+λ>0恒成立,得λ>-3答案:D2设a1,a2,…,a0是从-1,0,1这三个整数中取值的数列,若a1+a2+…+a0=9,且(a1+1)2+(a2+1)2+…+(a0

3、+1)2=107,则a1,a2,…,a0中有0的个数为A10B1112D13解析:将已知的等式展开整理得a12+a22+a32+…+a02=39,故此0个数中有11个数为0答案:B3如下图,它满足:(1)第n行首尾两数均为n;(2)表中的递推关系类似杨辉三角,则第n行(n≥2)第2个数是_______________解析:设第n行的第2个数为an,不难得出规律,则an+1=an+n,累加得an=a1+1+2+3+…+(n-1)=答案:4已知an=lgn+1(n+2)(n∈N*),观察下列运算a1•a2=lg23•lg34=•

4、=2,a1•a2•a3•a4•a•a6=lg23•lg34•…•lg67•lg78=••…••=3……定义使a1•a2•a3•…•a为整数的(∈N*)叫做企盼数试确定当a1•a2•a3•…•a=2008时,企盼数=______________解析:由a1•a2•…•a=R

5、26;••…•==lg2(+2)=2008,解之得=22008-2答案:22008-2●典例剖析【例1】(200年春季上海,20)某市2004年底有住房面积1200万平方米,计划从200年起,每年拆除20万平方米的旧住房假定该市每年新建住房面积是上年年底住房面积的%(1)分别求200年底和2006年底的住房面积;(2)求2024年底的住房面积(计算结果以万平方米为单位,且精确到001)剖析:本题实质是一个等比数列的求和问题解:(1)200年底的住房面积为1200(1+%)-20=1240(万平方米),2006年底的住房面积为

6、1200(1+%)2-20(1+%)-20=1282(万平方米),∴200年底的住房面积为1240万平方米,2006年底的住房面积为1282万平方米(2)2024年底的住房面积为1200(1+%)20-20(1+%)19-20(1+%)18-…-20(1+%)-20=1200(1+%)20-20×≈22264(万平方米),∴2024年底的住房面积约为22264万平方米评述:应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案【例2】由于美伊战争的影响,据估计,伊拉克将产生60~100万难民,联合国难民署计划从4月1日起为伊难民运送食品第一天运送

7、1000t,第二天运送1100t,以后每天都比前一天多运送100t,直到达到运送食品的最大量,然后再每天递减100t,连续运送1天,总共运送21300t,求在第几天达到运送食品的最大量剖析:本题实质上是一个等差数列的求通项和求和的问题解:设在第n天达到运送食品的最大量则前n天每天运送的食品量是首项为1000,公差为100的等差数列an=1000+(n-1)•100=100n+900其余每天运送的食品量是首项为100n+800,公差为-100的等差数列依题意,得1000n+×100+(100n+800)(1-n)+×(-100)=21300(1≤n≤

8、1)整理化简得n2-31n+198=0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。