斜拉索参数振动的理论研究

斜拉索参数振动的理论研究

ID:15457178

大小:36.00 KB

页数:6页

时间:2018-08-03

斜拉索参数振动的理论研究_第1页
斜拉索参数振动的理论研究_第2页
斜拉索参数振动的理论研究_第3页
斜拉索参数振动的理论研究_第4页
斜拉索参数振动的理论研究_第5页
资源描述:

《斜拉索参数振动的理论研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、斜拉索参数振动的理论研究摘要:研究斜拉索在弦向位移激励下的面内非线性振动方程,该振动方程考虑拉索垂度、倾斜角、大位移、激励幅值、阻尼等影响因素,并应用龙格-库塔数值积分法求解该微分方程。数值计算表明斜拉索的参数振动与系统频率比、激励幅值、阻尼等因素有关,参数振动发生在一定的频率比范围内,斜拉索振幅与频率比关系曲线体现出非线性特性。关键词:斜拉索;参数振动;非线性;频率比;阻尼0引言拉索是斜拉桥的主要受力构件,由于其质量相对较小、刚度小、阻尼较低的特点,极易发生各种形式的振动。外部激励作为参数出现在振动系统中,并且随着时间变化,在这种激励作用下的振动称为参数振动[1]。当激励频率为拉索固有频率

2、1倍左右时发生的共振称之为主共振;当激励频率为拉索固有频率2倍左右时发生的共振称之为主参数振动,以下简称参数振动。对斜拉索参数振动理论的研究随着数学和力学的发展而进步,拉索振动方程的求解推动了工程技术的进步[2]。针对斜拉索许多学者建立了各种各样的理论模型,tagata把索简化为无质量的弦,导出了无量纲的mathieu方程[3],研究了索的一阶参数振动,lilien在tagata的基础上研究了拉索稳态振动时的振动幅值、瞬态振动时索拉力的表达方程[4],takahashi计算了拉索参数振动的不稳定区域边界[5],costa导出了斜拉索的在竖向激励下的非线性振动方程[6],研究拉索倾角对参数振动

3、振幅和索内力的影响,亢战建立了简化的索桥耦合参数振动数学模型,进行数值求解,并讨论了阻尼对斜拉索参数振动的影响[7],汪至刚建立了斜拉索非线性振动的力学模型,讨论了振动系统的频率匹配关系并提出了一种被动控制装置[8],陈水生建立了斜拉索面内参数振动以及索桥耦合非线性参数振动系统数学模型并进行数值求解,分析了各种参数对斜拉索参数振动的影响[9,10]。本文进行斜拉索的参数振动理论研究,研究斜拉索在弦向位移激励下的面内非线性振动方程,该方程考虑了拉索垂度、倾斜角、阻尼和激励幅值等因素的影响,经数值计算分析频率比、激励幅值、斜拉索阻尼对参数振动的影响。1拉索参数振动理论分析斜拉索参数振动力学模型如

4、图1所示,建立斜拉索参数振动运动方程基于下列假定:(1)不考虑索的抗弯刚度、抗扭刚度和抗剪刚度;(2)拉索的垂跨比较小,拉索在自重作用下的线形为抛物线;(3)索的变形本构关系服从虎克定律且各点受力均匀,索在振动过程中处于线弹性范围内;(4)仅考虑拉索的面内振动,也就是xy平面内的振动。图1斜拉索面内参数振动模型取拉索微元体,根据牛顿第二定律建立拉索在xy平面内的振动微分方程为[2]:(1)根据文献[10],建立斜拉索在面内位移激励下的一阶参数振动微分方程为:(2)式中,,,,,,,,,,(3)其中,为与拉索同样规格标准弦的一阶振动圆频率,为考虑拉索垂度效应和几何非线性因素后的一阶振动圆频率,

5、为拉索一阶振动模态阻尼比,为参数振动项系数,与激励幅值有关,为平方非线性项系数,与拉索的倾斜角有关,为立方非线性项系数,与拉索的弦向变形有关,为外激励项系数,与外激励幅值和拉索的倾斜角有关,为拉索跨中垂度,为反映拉索弹性和几何垂度特性的重要参数[2],由h.maxirvine最先引入,又称irvine参数。由(2)式可以看出在弦向位移激励下,由于垂度和倾斜角的影响,斜拉索的自振频率发生了变化,并且斜拉索的振动微分方程存在平方非线性项、立方非线性项和外激励项,为典型的非线性振动微分方程。本文应用龙格-库塔数值积分求解该微分方程,并分析各参数对系统特性的影响。与文献[6]中拉索振动微分方程比较可

6、以看出,为了研究的方便并且突出本试验研究的重点,本文斜拉索振动微分方程只考虑了弦向位移激励引起的面内振动,没有考虑模态耦合以及面外振动。2数值计算结果分析2.频率比对主共振和参数振动的影响应用龙格-库塔数值积分求解式(1),同时根据试验数据,得到斜拉索稳态振动时跨中振幅随频率比变化的特性曲线,如图2。图2跨中振幅与频率比的关系曲线由图2可以看出,斜拉索系统在一定的频率比范围内才会发生主共振和参数振动[7],跨中振幅峰值对应的频率比稍微大于1和2。在图(d)中,激励幅值ud=7mm时斜拉索的参数振动频率比范围为1.87~2.11,振幅峰值对应的频率比为2.08。在主共振的频率比区间,随着频率比

7、的增加,跨中振幅逐渐增大到峰值,然后随着频率比的增加,跨中振幅逐渐减小;在参数振动区间,随着频率比的增加,跨中振幅逐渐增大到峰值,然后突降到微小振幅值,发生跳跃现象,这是非线性系统特有的现象[1]。2.2.4激励幅值对主共振和参数振动的影响改变式(1)中的弦向位移激励幅值,分析拉索的跨中振幅与激励幅值的关系,如图3所示。图3跨中振幅与激励幅值的关系曲线从图3可以看出来,斜拉索主共振时,跨中振幅随着激励幅值的增

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。