数学建模之输油管的布置方案

数学建模之输油管的布置方案

ID:1522145

大小:155.00 KB

页数:14页

时间:2017-11-12

数学建模之输油管的布置方案_第1页
数学建模之输油管的布置方案_第2页
数学建模之输油管的布置方案_第3页
数学建模之输油管的布置方案_第4页
数学建模之输油管的布置方案_第5页
资源描述:

《数学建模之输油管的布置方案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数学建模之输油管的布置方案一、问题的重述某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型与方法。1.针对两炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出你的设计方案。在方案设计时,若有共用管线,应考虑共用管线费用与非共用管线费用相同或不同的情形。2.设计院目前需对复杂情形进行具体的设计。两炼油厂的具体位置由附图所示,其中A厂位于郊区(图中的I区域),B厂位于城区(图中的II区域),两个区域的分界线用图中的虚线表示。图中各字

2、母表示的距离(单位:千米)分别为a=5,b=8,c=15,l=20。若所有管线的铺设费用均为每千米7.2万元。铺设在城区的管线还需增加拆迁和工程补偿等附加费用,为对此项附加费用进行估计,聘请三家工程咨询公司(其中公司一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。估算结果如下表所示:工程咨询公司公司一公司二公司三附加费用(万元/千米)212420请为设计院给出管线布置方案及相应的费用。3.在该实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相适应的油管。这时的管线铺设费用将分别降为输送A厂成品油的每千米5.6万元,输送B

3、厂成品油的每千米6.0万元,共用管线费用为每千米7.2万元14,拆迁等附加费用同上。请给出管线最佳布置方案及相应的费用。二、模型假设1、管道均以直线段铺设,不考虑地形影响。2、不考虑管道的接头处费用。3、忽略铺设过程中的劳动力费用,只考虑管线费用。4、将两炼油厂和车站近似看作三个点。5、将铁路近似看作一条直线。6、不考虑施工之中的意外情况,所有工作均可顺利进行。7、共用管线的价格如果和非公用管线不一致,则共用管线价格大于任意一条非公用管线价格,小于两条非公用管线价格之和。8、根据查询资料我们可以为所给出的三个工程咨询公司进行分权,甲级资质分

4、权0.4,乙级资质分权为0.3。9、假设共用管线与非共用管线存在价格差时,共用管线价格大于非共用管线价格低于两倍的非共用管线价格。10、默认A炼油厂距离铁路比B炼油厂近。14三、符号说明W:方案的经费a:A厂到铁路的距离b:B厂到铁路的距离c:A厂到城郊分界线的距离l:A、B两厂之间的铁路长度m:共用管道的费用(万元/千米)n:非共用管道费用(万元/千米)L:为管线总长度h:共用管线的长度x1:车站的横坐标(问题二)y1:城郊分界处拐点的纵坐标(问题二)x2:共用管线和非共用管线交点的横坐标(问题三)y2:城郊分界处拐点的纵坐标(问题三)p

5、:附加费用的估计值。四、问题分析问题一:首先要考虑两个工厂是否在铁路的同一侧,如果两个工厂在铁路的同一侧那么一定要考虑共用管线的问题。如果不在铁路的同一侧那么就没有必要考虑共用管线这个问题。当两个工厂在铁路两边时,根据两点之间线段最短的原理14只要求出两厂之间的距离,就可以得到最低费用设计;当两个工厂在铁路的同一侧时,且当没有共用管线时,只需利用光的传播原理可得到最短路径;在考虑到有共用管线时,需建立方程求解最低消费设计方案。问题二:这个问题从市区和郊区分两个部分分析,火车站建立在郊区费用要少;因为郊区非共用管线与共用管线的费用相同,所以可

6、以用最短路径的方法来考虑,同时又要求费用最小,可以通过方程解出最低费用及对应的铺设线路。问题三:通过建立坐标系设两个点的坐标,同时也是表示出管线的长度,然后再与各自的费用之积确定总的费用,从而算出两点的坐标值。即确定了管线的路线。五、模型的建立与求解5.1关于问题1的模型建立与求解对于管线布置的分析,分为两种情况:1、两个炼油厂在铁路两侧,如图所示:CAEDablB两炼油厂A,B直接的连线与铁路的交点E为车站位置此时L=此时为最低费用设计方案。2、两个炼油厂位于铁路的同一侧,则需考虑有无共用管线两种情况:14a.当没有公用管线时,此时找出两

7、厂与铁路交点连线的最近路线即可,如图:CA’EDablBAa过铁路CD作A点的对称点A’,连接A’B,与铁路相交于点E即为车站所在位置,此时L=此时为最低费用设计方案。b.当存在共用管线时:A、当共用管线与非共用管线价格相同,均为m时:设计方案如图所示ACDBblhEFa2xxYX假设公共管线长度为h;(0<h<b)x=a-h(1)L=+h(2)14L=+h(3)W=Lm=m*+m*h(4)当实际情况下已知a,b,l的情况下,上式只存在一个未知数h,再结合h的范围即可得出最低费用的设计方案。B、当共用管线价格为m,非共用管线价格为n;(n<

8、m<2n)设计方案如图所示:AaClxhFEbBDW=h*m+n*+n*其中:0<x<l;0<h<b;实际情况下的费用可以根据已知道的常量a、b、l再结合x、h的取值范围可以得出

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。