用高斯消元发解线性方程组

用高斯消元发解线性方程组

ID:1510392

大小:232.50 KB

页数:22页

时间:2017-11-12

用高斯消元发解线性方程组_第1页
用高斯消元发解线性方程组_第2页
用高斯消元发解线性方程组_第3页
用高斯消元发解线性方程组_第4页
用高斯消元发解线性方程组_第5页
资源描述:

《用高斯消元发解线性方程组》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、用高斯消元法解线性方程组北京景山学校何江舟GPA排名系统(CTSC2001)高等院校往往采用GPA来评价学生的学术表现。传统的排名方式是求每一个学生的平均成绩,以平均成绩作为依据进行排名。对于不同的课程,选课学生的平均成绩会受到课程的难易程度等因素的影响,因此这种排名方式不够合理。为此,我们需要对排名系统进行这样的改进:对第i门课的每一个学生的成绩加上一个特定的修正值di(调整后的成绩不按照百分制),使得经过调整后,该课的平均分等于选该课的所有学生的所有课的平均分。对每一门课都这样调整,使得上述条件对所有课程都满足。你的任务是根据

2、一个年级学生某学年的成绩,通过上述调整,得出他们的排名。简要分析Ai:选修第i门课的学生的集合Bj:第j个学生选修课程的集合Gi,j:第j个学生第I门课的成绩di:第i门课的修正值对于第p门课,可列出如下关系式:这是关于di(i=1,2,…,n)的线性方程,我们可以整理出n个这样的方程。线性方程组的一般形式a1,1x1+a1,2x2+……+a1,nxn=b1a2,1x1+a2,2x2+……+a2,nxn=b2……an,1x1+an,2x2+……+an,nxn=bn下面是n元线性方程组的一般形式:我们可以把它表示为增广矩阵的形式:a

3、1,1a1,2……a1,nb1a2,1a2,2……a2,nb2……an,1an,2……an,nbn先看一个例子2-131425412072-1314-122.5-1.56.52-1314-12-0.8755.25×2×0.5×2.5得出:x3=5.25/(-0.875)=-6x2=(2-(-1)x3)/4=-1x1=(1-(-1)x2-3x3)/2=9消元过程a1,1(1)a1,2(1)……a1,n(1)b1(1)a2,1(1)a2,2(1)……a2,n(1)b2(1)……an,1(1)an,2(1)……an,n(1)bn(1)注

4、:用上标(k)表示第k次消元前的状态第1次消元,第1行的乘数:(i=2,3,…,n)a1,1(1)a1,2(1)……a1,n(1)b1(1)a2,2(2)……a2,n(2)b2(2)……an,2(2)……an,n(2)bn(2)得到新的增广矩阵:ai,j(2)=ai,j(1)-mi,1a1,j(1)bi(2)=bi(1)-mi,1b1(1)(i,j=2,3,…,n)第k次消元,第k行的乘数:(i=k+1,k+2,…,n)消元过程a1,1(1)a1,2(1)…………a1,n(1)b1(1)a2,2(2)…………a2,n(2)b2(2

5、)…………ak,k(k)……ak,n(k)bk(k)……an,k(k)……an,n(k)bn(k)第k次消元前的增广矩阵:ai,j(k+1)=ai,j(k)-mi,kak,j(k)bi(k+1)=bi(k)-mi,kbk(k)增广矩阵的变化:(i,j=k+1,k+2,…,n)第k步消元的主行第k步消元的主元素回代过程a1,1(1)a1,2(1)……a1,n(1)b1(1)a2,2(2)……a2,n(2)b2(2)……an,n(n)bn(n)最后得到的增广矩阵:最终结果的计算:为什么要选主元素前面介绍的消元法都是按照自然顺序,即x1

6、、x2、……、xn的顺序消元的。有:所以每一次消元的主元素都不能为0。如果按照自然顺序消元的过程中出现的ak,k(k)=0,那么消元无法继续进行下去。或者

7、ak,k(k)

8、很小,也会严重影响计算精度。为什么要选主元素例如(假设运算过程中使用单精度实数):10-101111210-1011-1010-1010解得:x1=0,x2=1这个解与第二个方程差异很大。究其原因,因为消元过程中第一个方程所乘的系数过大,使得上式“吃掉”了下式,所以在结果中根本无法体现下式。但如果调整一下顺序:11210-101111211解得:x1=1,x2=

9、1,这个解基本符合原方程所以每次消元的主元素的绝对值应该尽可能大,使得与主行相乘的乘数尽可能小。选主元素a1,1(1)a1,2(1)…………a1,n(1)b1(1)a2,2(2)…………a2,n(2)b2(2)…………ak,k(k)……ak,n(k)bk(k)………al,k(k)……al,n(k)bl(k)………an,k(k)……an,n(k)bn(k)进行第k次消元时,将ak,k一下各元素(包括ak,k)进行比较,将其中的最大者所在行与第k行交换。无解的情况如果在消元的过程中,增广矩阵出现这样一行:左侧各未知数的系数都为0,而右

10、侧的常数项不为0,则意味着方程组无解。无数组解的情况在消元过程中,出现这样一行:各未知数的系数和常数项都为0。这相当于少了一个方程,也就是接下来的消元过程中,方程的个数少于未知数的个数,方程要么无解,要么有无数组解。下面讨论对于这样的方程,如何得到

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。