欢迎来到天天文库
浏览记录
ID:15048499
大小:76.50 KB
页数:3页
时间:2018-08-01
《初中数学倍长中线》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、巧添辅助线——倍长中线【夯实基础】例:中,AD是的平分线,且BD=CD,求证AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,证明二次全等方法2:辅助线同上,利用面积方法3:倍长中线AD【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于E使DN=MD,连接BE连接CD【经典例题】例1:△ABC中,AB=5,AC=3,求中线AD的取值范围提示:画出图形,倍长中线AD,利用三角形两边之
2、和大于第三边例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE方法1:过D作DG∥AE交BC于G,证明ΔDGF≌ΔCEF方法2:过E作EG∥AB交BC的延长线于G,证明ΔEFG≌ΔDFB方法3:过D作DG⊥BC于G,过E作EH⊥BC的延长线于H证明ΔBDG≌ΔECH3例3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF提示:倍长AD至G,连接BG,证明ΔBDG≌ΔCDA三角形BEG是等腰三角形
3、例4:已知:如图,在中,,D、E在BC上,且DE=EC,过D作交AE于点F,DF=AC.求证:AE平分提示:方法1:倍长AE至G,连结DG方法2:倍长FE至H,连结CH例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE提示:倍长AE至F,连结DF证明ΔABE≌ΔFDE(SAS)进而证明ΔADF≌ΔADC(SAS)【融会贯通】1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论
4、提示:延长AE、DF交于G证明AB=GC、AF=GF所以AB=AF+FC32、如图,AD为的中线,DE平分交AB于E,DF平分交AC于F.求证:提示:方法1:在DA上截取DG=BD,连结EG、FG证明ΔBDE≌ΔGDEΔDCF≌ΔDGF所以BE=EG、CF=FG利用三角形两边之和大于第三边方法2:倍长ED至H,连结CH、FH证明FH=EF、CH=BE利用三角形两边之和大于第三边3、已知:如图,DABC中,ÐC=90°,CM^AB于M,AT平分ÐBAC交CM于D,交BC于T,过D作DE//AB交BC于E,求证:CT=
5、BE.提示:过T作TN⊥AB于N证明ΔBTN≌ΔECD3
此文档下载收益归作者所有