高考三角函数解题方法例题分析

高考三角函数解题方法例题分析

ID:14929055

大小:487.50 KB

页数:6页

时间:2018-07-31

高考三角函数解题方法例题分析_第1页
高考三角函数解题方法例题分析_第2页
高考三角函数解题方法例题分析_第3页
高考三角函数解题方法例题分析_第4页
高考三角函数解题方法例题分析_第5页
资源描述:

《高考三角函数解题方法例题分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、三角函数解题方法例题分析一、知识整合1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数的图象;理解图象平移变换、伸缩变换的意

2、义,并会用这两种变换研究函数图象的变化.二、高考考点分析各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,有以下几个层次:第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值

3、,求复合函数值域等。三、方法技巧1.三角函数恒等变形的基本策略。(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。(2)项的分拆与角的配凑。分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=-等。(3)降次与升次。(4)化弦(切)法。(5)引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。2.证明三角等式的思路和

4、方法。(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。4.解答三角高考题的策略。(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。(2)寻找联系:运用相关公式,找出差异之间的内在联系。(3)合理转化:选择恰当的公式,促使差异的转化。四、例题分析-6-例

5、1.已知,求;解:;(利用了什么?)例2.已知,求的值.解:.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。例3.求函数的值域。解:设,则原函数可化为,因为,所以当时,,当时,,所以,函数的值域为。例4.已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解:(1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,-6-因为,,所以成立,从而

6、函数的图像关于直线对称。例5.已知函数y=cos2x+sinx·cosx+1(x∈R),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos2x+sinx·cosx+1=(2cos2x-1)++(2sinx·cosx)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+所以y取最大值时,只需2x+=+2kπ,(k∈Z),即x=+kπ,(k∈Z)。所以当函数y取最

7、大值时,自变量x的集合为{x

8、x=+kπ,k∈Z}(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像;(iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像。综上得到y=cos2x+sinxcosx+1的图像。说明:本

9、题是2000年全国高考试题,属中档偏容易题,主要考查三角函数的图像和性质。这类题一般有两种解法:一是化成关于sinx,cosx的齐次式,降幂后最终化成y=sin(ωx+)+k的形式,二是化成某一个三角函数的二次三项式。本题(1)还可以解法如下:当cosx=0时,y=1;当cosx≠0时,y=+1=+1-6-化简得:2(y-1)tan2x-tanx+2y-3=0∵tanx∈R,∴△=3-8(y-1)(2y-3)≥0,解之得:≤y≤∴ymax=,此时对应自变量x的值集为{x

10、x=kπ+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。