人教a版必修平面向量的实际背景及基本概念学案

人教a版必修平面向量的实际背景及基本概念学案

ID:14622958

大小:350.50 KB

页数:10页

时间:2018-07-29

人教a版必修平面向量的实际背景及基本概念学案_第1页
人教a版必修平面向量的实际背景及基本概念学案_第2页
人教a版必修平面向量的实际背景及基本概念学案_第3页
人教a版必修平面向量的实际背景及基本概念学案_第4页
人教a版必修平面向量的实际背景及基本概念学案_第5页
资源描述:

《人教a版必修平面向量的实际背景及基本概念学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、疱工巧解牛知识•巧学一、向量1.数学中,我们把既有大小又有方向的量叫做向量,而把那些只有大小,没有方向的量叫做标量.2.具有大小和方向的量称为向量.更具体一些,我们先把向量理解为“一个位移”或“一点相对于另一点位置”的量.这是因为有些向量不仅有大小和方向,而且还有作用点.例如,力就是这样的量.显然,若用同样大小的力作用于一弹簧上,作用点不同,效果是不同的.有些向量是只有大小和方向,而无特定的位置,例如,位移、速度等.通常把后一类向量叫做自由向量.本章,我们所接触的向量,若无特别说明,都认为是自由向量.也就

2、是说,本章所学的向量只有大小和方向两个要素.学法一得数学中的向量是由大小和方向唯一确定的,是与起点无关的向量.也就是说,只要不改变它的大小和方向,是可以任意平行移动的.辨析比较①数量只有大小,是一个代数量,而向量不仅有大小,还有方向(两重性);②数量能比较大小,而向量不能比较大小.例如,a>b没有意义,而

3、a

4、>

5、b

6、是有意义的;③数量可以进行代数运算,如数的加、减、乘、除运算,而向量只能按向量加法、减法的平行四边形法则和三角形法则或向量数乘的运算律去运算.二、有向线段在物理学中,表示位移的最简单方法是用

7、一条带箭头的线段,箭头的方向表示位移的方向,线段的长度表示位移的大小.速度和力也是用这种方法表示的,箭头的方向分别表示速度和力的方向,线段的长度分别表示速度和力的大小.1.定义:一般地,在线段AB的两个端点中,规定一个顺序,假设A为起点,B为终点,我们说线段AB具有方向,具有方向的线段叫做有向线段.显然,它的方向由A指向B.2.表示方法:以A为起点,以B为终点的有向线段记作.应注意始点一定要写在终点的前面.如图2-1-3.图2-1-33.有向线段的三要素:已知,线段的长度也叫做有向线段AB的长度,记作

8、

9、

10、.有向线段包含三个要素:起点、方向、长度.显然有向线段的终点由它的起点、方向和长度唯一确定.辨析比较由向量与有向线段的组成要素可知,向量和有向线段是有区别的.但是当我们约定有向线段的起点也是任意的时候,它们就是相同的了.我们就可以说“向量就是有向线段,有向线段就是向量”.三、向量的表示法1.用有向线段表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量的长度(或称模),记作

11、

12、.如图2-1-4所示.图2-1-4规定了合适的比例尺后,平面上的向量就可以用有向线段来表示了.2.用字母表示

13、向量.向量印刷时可用黑体小写字母如a、b、c来表示,书写用、、来表示,还可用表示向量的有向线段起点和终点的字母表示.四、两个特殊的向量1.零向量:长度(模)为0的向量,记作0.零向量的方向是不确定的.误区警示注意0与0的区别:0是一个向量,具有方向,而0是数量,没有方向.2.单位向量:长度(模)为1个单位的向量叫做单位向量.显然,单位向量有无数个;单位向量的大小相等;单位向量不一定相等.五、平行向量1.定义:方向相同或相反的非零向量叫做平行向量.如图2-1-5,a,b,c是平行向量.图2-1-5通常记作a

14、∥b∥c.2.规定零向量与任一向量平行,即对于任意向量a,都有0∥a.六、相等向量长度相等且方向相同的向量叫做相等向量.如图2-1-6,用有向线段表示的向量a与b相等,记作a=b.图2-1-6对于相等向量的理解要注意以下几个问题:(1)零向量与零向量相等,即0=0.(2)任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.(3)由相等向量的定义可知,对一个向量,只要不改变它的大小和方向,可任意平移(自由向量的起点可任意选定).如图2-1-7,容易看出:.由以上分析,一个平面向量的

15、直观形象是平面上“同向且等长的有向线段的集合”.图2-1-7学法一得判断两个向量相等的唯一依据就是它的定义,即只需比较两个向量的模(有向线段的长度)是否相等、方向是否相同,与它们所在的直线是否共线无关.七、共线向量由于任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量.如图2-1-8,a、b、c是一组平行向量,任作一条与a所在直线平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.图2-1-8学法一得任一向量都与它自身是平行向量,因为零向量的方向不确定,所以规定零向量与任一向量都

16、是平行向量.由于平行向量的基线互相平行或重合,所以其方向相同或相反,向量平行与直线平行不同,向量平行包括基线重合的情况,而直线平行一般不包含重合的情形.典题•热题知识点一向量例1指出下列概念是不是向量:(1)作用于物体上的大小为10N,方向是南偏西30°的力;(2)温度表中表示零上、零下的温度;(3)物体M沿东北方向移动了8m的位移.思路分析:根据向量定义可以判别.解:(1)是向量.因为力是既有大小又有方向的量;(2)不是.因

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。