浅谈初中数学思想方法的教学

浅谈初中数学思想方法的教学

ID:14433595

大小:27.50 KB

页数:4页

时间:2018-07-28

浅谈初中数学思想方法的教学_第1页
浅谈初中数学思想方法的教学_第2页
浅谈初中数学思想方法的教学_第3页
浅谈初中数学思想方法的教学_第4页
资源描述:

《浅谈初中数学思想方法的教学》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、浅谈初中数学思想方法的教学范洪章九年义务教育初中《数学教学大纲》前言的第一段简述了数学学科的地位、作用:“在当代社会中,数学的应用非常广泛,它是人们参加社会生活,从事生产劳动和学习、研究现代科学技术必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。”这里出现了“思想、方法”以及“成为现代文化的重要组成部分”等词语,突出了数学具有思想、方法的价值特征,说明数学对提高人类文化素质具有重要作用。《大纲》中还提到“使学生受到必要的数学教育,具有一定的数学素养…。”而数学素养的提高一方面赖于学习过程中获取知识量的多少,更重要的是在于学习过程中的

2、数学意识、数学精神、数学的思维方法、研究方法、推理方法等,所以加强数学思想、方法的教学,不仅关系到人的数学素养的培养和提高,而且直接关系到人的素质的培养和提高。一、对数学思想、方法的认识“数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果”,“是对数学事实与理论的本质认识”。数学方法是指人们在数学活动中为达到预期目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式。方法和思想在一定范围内有通用性(如:“消元”既是方法也是思想),但思想还具特有的体系性。方法要在实践中不断完善、创新,而思想则是熠熠生辉的。一般说来,技巧累积到规律化的程度就出现了

3、方法,方法升华到通用性的境地就形成了思想。数学思想和方法是数学学科的精髓,是数学素养的重要内容之一,是数学发展的内在驱动力。数学思想、方法比数学知识更具有普遍性,它可以迁移到数学以外的自然和社会现象,是人们认识自然和社会现象的思想、观点和方法。九年义务教育初中《数学教学大纲》指出:“初中数学的基础知识主要指代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。”把数学思想和方法列为基础知识,是我国数学教育多年研究的成果,进一步强调了数学思想、方法的重要作用,数学思想、方法可以统率全部的数学知识,因而加强数学思想、方法的教学既是教学本身的要求,也是提高

4、数学教学质量的要求。初中数学中蕴涵了丰富的数学思想、方法的内容。如字母表示数的思想,数形结合的思想、函数思想、统计思想、分类思想(包括等价转化思想与化归思想)、等量思想、不等量思想等大量数学思想。数学方法有理论形成的方法、观察法、实验法、类比法、一般化方法和抽象化方法;解决具体数学问题的方法有代入法、消元法、降次法、配方法、待定系数法、分析法、综合法、坐标法、变换法等。数学知识、思想、方法、技能密不可分,相互联系,相互依存,协同民展,只要在课堂教学法中认真把握,把它们融于一体、就能使学生在学习过程中潜移默化,不知不觉在获得这些思想方法。二、实施数学思想方法教学的做法1、钻研教材,充分

5、挖掘教材中蕴涵的数学思想方法。教材的弹性很大,其选择的材料是精心组织、合理安排的,表达了一定的思想、方法和目的,但是从怎样的材料出发,教师设计怎样的现实情景(或数学情景)?学生在参与这一情景研究的过程中形成怎样的数学思想和方法,教材只做了简短的说明,但是由这些材料反映出来的数学思想、方法确如灵魂一样支配着整个教材,因此,教师在教学过程中一定要研究大纲,吃透教材,揣摩教材编写的意图,挖掘教材中蕴涵的数学思想、方法,把握住支配整个教材的思想,把要渗透的思想方法精心设计到教案中去,例如初一代数第一册(上)的核心是字母表示数,正是因为有了字母表示数,我们才能总结一般公式和用字母表示定律,才形

6、成了代数学科,这册教材从列代数式到整式加减至一元一次方程,以字母表示数为主线贯穿始终,列代数式是用字母表示已知数,列方程是用字母表示未知数,同时本章通过求代数式的值渗透了对应的思想,用数轴把数和形紧密联系起来,通过数形结合来巩固具有相反意义的量的概念、了解相反数及绝对值、研究有理数加、减法和乘法的意义等,通过有理数、整式概念的教学,渗透了分类思想,教师只有这样去把握教材的思想体系,才能在教学中合理地不失时机地渗透数学思想和方法。2、注重在知识介绍与展示过程中渗透数学思想和方法概念、公式、法则、性质、定理等数学结论的导出过程,不是简单的再现,教师要创设一定的问题情景,提供丰富的感知材料

7、,使学生的思维经历数学结论的发生、民展、形成的全过程,并在这一过程中通过尝试、观察、猜想、归纳、概括、类比、假设、检验等自我接受数学思想、方法的渗透。教师要抓住各种时机,引导学生透过问题表面理解问题本质,总结出教学思想方法上的一些规律性的内容。例如:进行同底数幂的乘法教学时,首先从数的运算特例中,抽象概括出幂的一般运算性质。先让学生计算10×10、 23×22,底数一般化:a3a2;指数再一般化:aman;由此得法则:aman=am+n。这样让学生经历了观

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。