加法交换律和加法结合律

加法交换律和加法结合律

ID:14426015

大小:238.50 KB

页数:15页

时间:2018-07-28

加法交换律和加法结合律_第1页
加法交换律和加法结合律_第2页
加法交换律和加法结合律_第3页
加法交换律和加法结合律_第4页
加法交换律和加法结合律_第5页
资源描述:

《加法交换律和加法结合律》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、加法交换律和加法结合律教学加法交换律时,出示了以下几组算式让学生计算。   16+27   27+16   45+27   27+45   ……   师:你发现了什么?大胆地猜猜看!(生自由发表意见,师随之用等于号将每组算式的左右两边连接起来。)   师:是不是像这样的算式都有同样的规律呢?你能仿照黑板上的样子,再写几个吗?…… 反思与实践从课堂教学流程上看,学生写出了很多,也交流了不少,论据可谓充分。可在课后交流评析时,教研室赵主任的一句追问:“学生算了吗?”使我如梦初醒。学生所举的大量实例的价值就遭

2、到了怀疑。原来,他们只是在机械地模仿,举的例子也是漫无目的,甚至不知道教师的本意是让他们通过计算来验证,而不是简单地依葫芦画瓢!如此“验证”,徒具其形,未具其神。如此“验证”,所谓的渗透数学思想方法,提升学生的思维水平的目标实现也只能是纸上谈兵罢了。教学的的失败使我陷入了深刻的思考。教学流程虽致力于让学生经历“猜想—验证”的过程,也意识到“枚举归纳”是小学阶段重要的验证方法,但是对于“枚举归纳法”都缺乏深层次的认识。于是我们对相关理论进行了再学习,明白了所谓枚举归纳是“根据一类事物中部分对象具有某种属性

3、并且没有遇到反例,从而推出该类所有对象都具有这种属性的归纳推理。”运用简单枚举归纳推理时应注意:被考察的对象数量越多、范围越广,结论就越可靠。教学之所以失败,症结就在这里。可以说,解剖课例的过程是痛苦的。但惟其痛苦,才有“凤凰涅磐”般的重生。于是有了第二次实践。为了防止学生机械模仿,我先示范着现场编出两个算式:17+39    39+17   师:这两个算式是否相等?怎样才能知道?(强调计算)然后郑重其事地在中间划上了等于号。   师:请你再写几组这样的算式,并且算一算,看看刚才的猜想是否正确?学生举例

4、、计算,教师有选择、有顺序地组织交流。生1:因为10+20=30  20+10=30所以10+20=20+10生2:因为18+26=44  26+18=44 所以18+24=24+18师:上面的例子都是两位数加两位数,还有不同的例子吗?生3:因为7+9=16 9+7=16 所以7+9=9+7生4:因为8+18=26 18+8=26 所以8+18=18+8生5:因为126+100=226  100+126=226 所以126+100=100+126   师:刚才同学们举出了一位数加一位数、两位数加一位数、

5、三位数加三位数等不同的类型的例子,计算起来都不困难,谁能举个难一点的数?在教师的“鼓动”下,同学们跃跃欲试,举出了更大的数。最后借助计算器,猜想同样得到了验证。这时学生的兴致调到了极高点。师:刚才同学们列举不同的类型的例子,还有一个非常特殊的数在暗自伤心呢!怎么把它给忘了呢?包含0的算式是否也符合这个规律呢?你能举个例子吗?师:有没有不符合这个规律的例子?你能举出来吗?……学生的视角在教师的引领下,不断地得以延展。接下来,加法结合律的猜想及验证过程顺畅自然,一气呵成。感悟与反思:第二次试教虽然教师对“验

6、证”只字未提,但我们可以感受到学生时时刻刻、真真切切地在经历验证的过程。随着教师组织的逐步深入,学生的思维也随之逐步优化。从理论上讲,再多的例子也只是不完全归纳,但我们仿佛看到广阔的数学王国展现在学生的视野中,一位数加一位数、两位数加一位数、两位数加两位数,甚至更大的数和特殊的0,都满足这样的规律而且没有人能举出反例,我们有理由相信枚举归纳的结论是正确的。在这个过程中,学生不仅获得了数学结论,更重要的是学会了获得数学结论的思想方法。两次试教及两次比较,使我深刻认识到:1.丰富的数学活动素材为“猜想—验证

7、”提供物质基础。验证结论是否可靠,在一定程度上取决于所枚举事例的数量和范围。所以,在运用枚举法进行教学时,教师要十分重视对学习材料的选择和设计,尽量增加枚举的数量,防止千人一面;同时要十分重视对学习活动的优化和组织,尽量扩展考察的范围,防止以偏概全。在生动活泼、精彩纷呈的数学活动材料的刺激下,学生的个性才能得到张扬,潜能才能得到挖掘。只有这样,才能作出有价值的猜想和多方法、多方位的验证,从而尽可能地增加结论的可信度。2.丰厚的数学活动经验为“猜想—验证”积淀思想方法。如果枚举时只注重“量”而忽略了“质”

8、,只注重了广泛的“发散”而忽略了典型的“提炼”,那么学生的思维水平就永远无法提升。教师适当的引导和点拨,犹如醍醐灌顶般促进学生的思维从合情推理水平向逻辑推理水平过渡,帮助学生积累从感性认识跃向理性认识的经验。在这样的数学活动过程中,学生获取的不仅仅是数学基本知识和基本技能,更重要的是数学基本思想和基本活动经验,尤其是,难能可贵的探究的品质将在学生的心灵生根、萌芽。3、有效的课堂交流是“猜想—验证”的有力保证。“枚举归纳”是小学阶段重要的验证

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。