资源描述:
《数值最优化算法与理论 第二版 (李董辉 董小娇 万中 着) 课后答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、viaCh2007-9-211.15WXBj℄>fxjg`℄rofXnmaxxjcjj=1Xns.taijxj≤bi(i=1,2,···,m)j=1xj≥0,(j=1,2,···,n)1.2H(1)_{∇f(z)=(∂f(z)∂f(z)···∂f(z))T∂z1∂z2∂zn1Aa11z1+a12z2+···+a1nzn+b1a21z1+a22z2+···+a2nzn+b2x=Az+b=...an1z1+an2z2+···+annzn+bnAxi=ai1z1+ai2z2+···+ainzn+bi,i=1,2
2、,···,n∂f(x)∂f(x)∂f(x)T∇f(z)=(,,···,)∂z1∂z2∂zn∂f(x)∂f(x)∂x1∂f(x)∂x2∂f(x)∂xn=·+·+···+·∂z1∂x1∂z1∂x2∂z1∂xn∂z1∂f(x)∂f(x)∂f(x)=a11+a21+···+an1∂x1∂x2∂xn...∂f(x)∂f(x)∂f(x)∂f(x)=a1n+a2n+···+ann∂zn∂x1∂x2∂xn∂f(x)∂f(x)∂f(x)a11∂x1+a21∂x2+···+an1∂xn..∇f(z)=.∂f(x)∂f(x)∂f(x)a1n∂x1+a2n∂x2+···
3、+ann∂xna11a21···an1∂f(x)∂x1=..·....∂f(x)∂xna1na2n···ann2
4、f∂f(x)∂f(x)∂f(x)T∇f(x)=(···)∂x1∂x2∂xn/∂f(x)∂f(x)∂f(x)T∇f(Az+b)=(···)∂x1∂x2∂xn^xT∇f(z)=A∇f(Az+b)(2)∂2f(z)∂2f(z)···∂z1∂z1∂z1∂zn2.∇f(z)=..∂2f(z)∂2f(z)···∂zn∂z1∂zn∂zn
5、f2∂(a∂f(x)+a∂f(x)+···+a∂f(x
6、))∂f(x)11∂x121∂x2n1∂xn=∂z1∂z1∂z1∂2f(x)∂2f(x)···∂x1∂x1∂x1∂xn..=(a11,a21,···,an1)·.∂2f(x)∂2f(x)···∂xn∂x1∂x1∂xna11a21=(a,a,···,a)∇2f(Az+b)·..1121n1.an1T2=α1∇f(Az+b)α1:8∂2f(x)T2=αj∇f(Az+b)αi,(i,j=1,2,···,n)∂zi∂zj3^x8T2T2α1∇f(Az+b)α1···αn∇f(Az+b)α1T2T2α1∇f(
7、Az+b)α2···αn∇f(Az+b)α22∇f(z)=...αT∇2f(Az+b)α···αT∇2f(Az+b)α1nnnT2=(α1,α2,···,αn)∇f(Az+b)(α1,α2,···,αn)T2=A∇f(Az+b)A1.3(1)∂f(x)∂f(x)T∇f(x)=(,)∂x1∂x2−40x(x−x2)+2(1−x)1211∇f(x)=20(x−x2)21∂2f(x)∂2f(x)2∂x1∂x1∂x1∂x2−40(x2−x1)+80x1−2−40x1∇2f(x)==−40x120∂2f(x)∂2f(x)∂x2∂x
8、1∂x2∂x2(2)16xx2−48x2x+32x3−8xx+8(x+x)121211212∇f(x)=16x2x−16x3+12x2−4x2+8(x+x)121211216x2−92xx+96x2−8x+832xx−48x2−8x+82121212112∇f(x)=32xx−48x2−8x+816x2+24x+812111241.4(1)`^(b3S1u&G8S1u&d.(2)d.{8xS2d.(3)y8d.{d.(4)
9、fS46f1e='Ru=S4=210、d, Ey/=d, S4V^xS4d.1.5H tpUR(i)(j)x,x∈S,∀βi,βj≥0(i)(j)
11、fSfdÆ βix∈S,βjx∈S
12、fSfd.∀λ∈[0,1] (i)(j)λ(βix)+(1−λ)βjx∈S/(i)(j)(λβi)x+(1−λ)βjx∈Sαi=λβi,αj=(1−λ)βjβi,βjUzp8∀αi,αj≥0 (i)(j)αix+αjx∈S5)"8X