欢迎来到天天文库
浏览记录
ID:14403431
大小:550.92 KB
页数:9页
时间:2018-07-28
《【精品】2017高考试题分类汇编-立体几何》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、立体几何1(2017北京文)(本小题14分)如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BDE时,求三棱锥E–BCD的体积.2(2017新课标Ⅱ理)(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,E是PD的中点.(1)证明:直线平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为,求二面角的余弦值.3(2017天
2、津理)(本小题满分13分)如图,在三棱锥P-ABC中,PA⊥底面ABC,.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C-EM-N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.94(2017新课标Ⅲ理数)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;
3、②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所称角的最小值为45°;④直线AB与a所称角的最小值为60°;其中正确的是________。(填写所有正确结论的编号)5(2017山东理)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点.(Ⅰ)设是上的一点,且,求的大小;(Ⅱ)当,,求二面角的大小.6(2017新课标Ⅰ理数).如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以
4、BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。97(2017新课标Ⅰ理数)(12分)如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.8(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD
5、,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.9.(2017江苏)(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线,的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将放在容器Ⅰ中,的一端置于点A处,另一端置于侧棱上,求没入水中部分的长度;(2
6、)将放在容器Ⅱ中,的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.910(2017天津文)(本小题满分13分)如图,在四棱锥中,平面,,,,,,.(I)求异面直线与所成角的余弦值;(II)求证:平面;(II)求直线与平面所成角的正弦值.11(2017北京理)(本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.(I)求证:M为PB的中点;(II)求二面角B-PD-A的大小;(III)求直线MC与平面BDP所
7、成角的正弦值.912(2017浙江)(本题满分15分)如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(第19题图)(Ⅰ)证明:平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.13(2017新课标Ⅲ文数)(12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14(20
8、17新课标Ⅰ文数)(12分)如图,在四棱锥P-ABCD中,AB//CD,且9(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.15(2017山东文)(本小题满分12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示,四边形ABCD为正方形,
此文档下载收益归作者所有