欢迎来到天天文库
浏览记录
ID:14328709
大小:433.00 KB
页数:5页
时间:2018-07-27
《不等式证明之函数构造法(颜秀华)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、不等式证明之函数构造法作者颜秀华(湖南省,长沙市第七中学,邮编410003)【摘要】利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是高考的常见题型。应对策略是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。【关键字】归零构造法,比较法构造,代换法构造一、归零构造法【例1】已知函数,求证:当时,恒有分析:本题是双边不等式,其右边直接从已知函数证明,构造不等号一边为零的函数,从
2、其导数入手即可证明。【解】∴当时,,即在上为增函数当时,,即在上为减函数故函数的单调递增区间为,单调递减区间于是函数在上的最大值为,因此,当时,,即∴(右面得证),现证左面,令,当,即在上为减函数,在上为增函数,故函数在上的最小值为,∴当时,,即∴,综上可知,当实例、(2007年,安徽卷)设求证:当时,恒有,简单分析:,当,时,不难证明5∴,即在内单调递增,故当时,,∴当时,恒有【原理】如果是函数在区间上的最大(小)值,则有(或),那么要证不等式,只要求函数的最大值不超过就可得证.二、比较法构造函数证明【例2】已知函数求证:在
3、区间上,函数的图象在函数的图象的下方;分析:函数的图象在函数的图象的下方问题,即,只需证明在区间上,恒有成立,设,,考虑到要证不等式转化变为:当时,,这只要证明:在区间是增函数即可。【解】设,即,则=当时,=从而在上为增函数,∴∴当时,即,故在区间上,函数的图象在函数的图象的下方。实例(2007年,安徽卷)已知定义在正实数集上的函数其中a>0,且,求证:简单分析:设则=,∴当时,,故在上为减函数,在上为增函数,于是函数在上的最小值是,故当时,有,即【原理】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为
4、函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。读者也可以设做一做,深刻体会其中的思想方法。5三、代换法构造函数证明【例3】(2007年,山东卷)证明:对任意的正整数n,不等式都成立.分析:本题是山东卷的第(II)问,从所证结构出发,只需令,则问题转化为:当时,恒有成立,现构造函数,求导即可达到证明。【解】令,则在上恒正,所以函数在上单调递增,∴时,恒有即,∴对任意正整数n,取【原理】我们知道,当在上单调递增,则时,有.如果=,要证明当时,,那么,只要令=-,就可以利用的单调增性来推导.也就是
5、说,在可导的前提下,只要证明0即可.四、导数结构法构造函数证明【例4】若函数y=在R上可导且满足不等式x>-恒成立,且常数a,b满足a>b,求证:.a>b【解】由已知x+>0∴构造函数,则x+>0,从而在R上为增函数。∴即a>b实例、(2007年,陕西卷)是定义在(0,+∞)上的非负可导函数,且满足≤0,对任意正数a、b,若a
6、【原理】由条件移项后,容易想到是一个积的导数,从而可以构造函数,求导即可完成证明。若题目中的条件改为,则移项后,要想到是一个商的导数的分子,平时解题多注意总结。五、换位思想构造函数【例5】.(全国)已知函数(1)求函数的最大值;(2)设,证明:.分析:对于(II)绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等
7、式的目的.证明如下:证明:对求导,则.在中以b为主变元构造函数,设,则.当时,,因此在内为减函数.当时,,因此在上为增函数.从而当时,有极小值.因为所以,即又设.则.当时,.因此在上为减函数.因为所以,即.实例、已知函数,求证:对任意的正数、,简单分析:提示:函数的定义域为,∴当时,,即在上为减函数当时,,即在上为增函数5因此在取得极小值,而且是最小值于是,即令于是因此恒有六、二阶导数函数证明导数的单调性【例6】.已知函数(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x解:(1)
8、f′(x)=aex-x,∵f(x)在R上为增函数,∴f′(x)≥0对x∈R恒成立,即a≥xe-x对x∈R恒成立记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x)e-x,当x>1时,g′(x)<0,当x<1时,g′(x)>0.知g(x)在(-∞,1)上为增函数,在
此文档下载收益归作者所有