欢迎来到天天文库
浏览记录
ID:14291888
大小:234.00 KB
页数:5页
时间:2018-07-27
《第四章 不定积分学习指导》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第四章不定积分学习指导一、知识脉络二、基本要求1.理解原函数和不定积分的概念2.牢记基本积分公式3.熟练掌握第一换元法(凑微分法)和分部积分法三、重点和难点1.重点:第一换元积分法,分部积分法2.难点:第二换元积分法、特殊函数的积分四、问题与分析1.由不定积分的定义可知,求已知函数的不定积分是找它的全体原函数。而找全体原函数的关键是求一个原函数,这个原函数的导数恰为已知函数。所以,积分法是微分法的逆运算,积分是否正确,可求出其导数来验证。2.不定积分的几何意义:不定积分是的一族积分曲线,这些曲线可以通过其中任何一条沿着轴上下平移得到。而且这些曲线在横
2、坐标相同的点处的切线斜率都相同,均为。53.由可导与不定积分之间的关系知,求导数与求不定积分是互为逆运算,所以对一个函数先求导再求不定积分,其结果是该函数加上一个任意常数;而对一个函数先求不定积分,再求导数,其结果是原被积函数。即,4.积分不变性定理:若,则,其中是的可微函数。5.第二换元法是在难以或不可能应用第一换元法时,先采用一次适当的变量替换,使所求不定积分恒等变为相对容易积分或处理的不定积分的所谓“缓一着”的方法。第二换元法中常用的变量替换形式如下表所示:代换名称被积函数换元形式三角函数,,,无理函数同时含有和6.运用分部积分公式求不定积分时
3、应注意以下几点:①分部积分法与直接积分法,换元积分法在同一题目中可交替使用;②运用部分积分公式前,需将所求不定积分化为的形式,即需要选定,之中的某一个为,另一个则为。5③恰当地选择哪一个作,哪一个作是至关重要的。一般地,选择和的原则是(1)由易求出其中一个原函数;(2)比原积分容易计算;(3)连续两次或两次以上应用分部积分公式时,再一次选择的,须是前一次选择的同类函数(即若第一次选择指数函数为,则第二次仍选择指数函数为),以免积分还原。常见的选择,的方法如下表,供大家参考,表中是多项式:不定积分类型和的选择,,,,,,,,,7.有理函数的积分解题程序
4、①用多项式除法,把被积函数代为一个整式与一个真分式之和;②把真分式分解成部分分式之和。所谓部分分式是指:分母为质因式或一质因式的若干次幂,而分子的次数低于分母的次数:(1)若分母中有因式,则其部分分式相应地有个,即5其中,,…,为常数。(2)若分母中有因式,,则部分分式相应的有个,即其中,()为常数。五、解题格式例1:求解:原式例2:求解:原式例3:求解:设,,则原式例4:求解:令,则,原式5例5:求解:原式5
此文档下载收益归作者所有