欢迎来到天天文库
浏览记录
ID:14211442
大小:423.52 KB
页数:26页
时间:2018-07-26
《积分的正交多项式近似》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ElectronicTransactionsonNumericalAnalysis.ETNAVolume19,pp.58-83,2005.KentStateUniversityCopyrightÓ2005,KentStateUniversity.etna@mcs.kent.eduISSN1068-9613.ASYMPTOTICAPPROXIMATIONSOFINTEGRALS:ANINTRODUCTION,WITHRECENTDEVELOPMENTSANDAPPLICATIONSTOORTHOGONALPOLYNOMIALS CHELOFERREIRA,JOSE´L.LO
2、PEZ´,ESMERALDAMAINAR,ANDNICOM.TEMMEAbstract.Intherstpartwediscusstheconceptofasymptoticexpansionanditsimportanceinapplications.Wefocusourattentiononspecialfunctionsdenedthroughintegralsandconsidertheirapproximationbymeansofasymptoticexpansions.Weexplainthegeneralideasofthetheoryofasym
3、ptoticexpansionsofintegralsanddescribetwoclassicalmethods(Watson'slemmaandthesaddlepointmethod)andmodernmethods(distributionalmethods).Inthesecondpartweapplytheseideastoapproximate(inanasymptoticsense)polynomialsoftheAskeytableintermsofsimplerpolynomialsoftheAskeytable.Weconsidertwodiffere
4、nttypesofasymptoticexpansionsthathavebeenrecentlydeveloped:i)someparameterofthepolynomialislargeorii)thedegree(andperhapsthevariabletoo)ofthepolynomialislarge.Foreachsituationweemployadifferentasymptoticmethod.Intherstcaseweusethetechniqueof“matchingofthegeneratingfunctionsattheorigin”.In
5、thesecondoneweemployamodiedversionofthesaddlepointmethodtogetherwiththetheoryoftwo-pointTaylorexpansions.Intherstcasetheasymptoticexpansionresultsinanitesumofpolynomials.Inthesecondonetheasymptoticexpansionisaconvergentinniteseriesofpolynomials.Weconcludethepaperwithinformationonotherr
6、ecentdevelopmentsintheresearchonasymptoticexpansionsofintegrals.Keywords.Asymptoticexpansionsofintegrals,asymptoticsoforthogonalpolynomials.AMSsubjectclassications.41A60,33C65.1.Introduction.Asymptoticanalysisisausefulmathematicaltoolwhichprovidesan-alyticalinsightandnumericalinformationa
7、boutthesolutionsofcomplicatedproblemsinappliedmathematics,engineering,physicsandmanyothersciences,whichrequireamathe-maticalframeworkfordescribingandmodelingscienticproblems.Someexamplesofthepowerofthistheoryarethefollowing:TheStirlingformulaforthefactorial:
此文档下载收益归作者所有