资源描述:
《lectures on representations of quivers》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LecturesonRepresentationsofQuiversbyWilliamCrawley-BoeveyContents§1.Pathalgebras......................3§2.Bricks.........................9§3.Thevarietyofrepresentations.............11§4.DynkinandEuclideandiagrams..............15§5.Finiterepresentation
2、type...............19§6.Morehomologicalalgebra................21§7.Euclideancase.Preprojectivesandpreinjectives....25§8.Euclideancase.Regularmodules.............28§9.Euclideancase.Regularsimplesandroots........32§10.Furthertopics.....................3
3、61A'quiver'isadirectedgraph,andarepresentationisdefinedbyavectorspaceforeachvertexandalinearmapforeacharrow.Thetheoryofrepresentationsofquiverstoucheslinearalgebra,invarianttheory,finitedimensionalalgebras,freeidealrings,Kac-MoodyLiealgebras,andmanyot
4、herfields.ThesearethenotesforacourseofeightlecturesgiveninOxfordinspring1992.Myaimwastheclassificationoftherepresentationsforthe~~~~~EuclideandiagramsA,D,E,E,E.Itseemedambitiousforeightnn678lectures,butturnedouttobeeasierthanIexpected.TheDynkincaseisa
5、nalysedusinganargumentofJ.Tits,P.GabrielandC.M.Ringel,whichinvolvesactionsofalgebraicgroups,astudyofrootsystems,andsomecleverhomologicalalgebra.TheEuclideancaseistreatedusingthesametools,andinadditiontheAuslander-Reitentranslations- , ,andthenotionofa
6、'regularuniserialmodule'.Ihaveavoidedtheuseofreflectionfunctors,Auslander-Reitensequences,andcase-by-caseanalyses.Theprerequisitesforthiscoursearequitemodest,consistingofthebasic1notionsaboutringsandmodules;alittlehomologicalalgebra,uptoExtandlongexac
7、tsequences;theZariskitopologyonn;andmaybesomeideasfromcategorytheory.InthelastsectionIhavelistedsometopicswhicharetheobjectofcurrentresearch.Ihopetheselecturesareausefulpreparationforreadingthepaperslistedthere.WilliamCrawley-Boevey,MathematicalInsti
8、tute,OxfordUniversity24-29St.Giles,OxfordOX13LB,England2§1.PathalgebrasOnceandforall,wefixanalgebraicallyclosedfieldk.DEFINITIONS.(1)AquiverQ=(Q,Q,s,t:Q011 Q0)isgivenbyasetQofvertices,whichforuswillbe{1,2,...,n},and0asetQofarrows,whi