顾沛漫谈数学文化

顾沛漫谈数学文化

ID:14155176

大小:45.00 KB

页数:4页

时间:2018-07-26

顾沛漫谈数学文化_第1页
顾沛漫谈数学文化_第2页
顾沛漫谈数学文化_第3页
顾沛漫谈数学文化_第4页
资源描述:

《顾沛漫谈数学文化》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、顾沛:漫谈数学文化 “十三年的数学学习后,那些数学公式、定理、解题方法也许都会被忘记,但是形成的数学素养却终身受用。”由于数学教学方式和内容的局限,尽管一个人经历至少长达13年的数学学习,但对数学的精髓却毫无概念,在宏观上把握数学的能力较差,也就是所谓的数学素养较差。甚至误以为学数学就是为了解题,考试,而不了解数学在实际生产生活中的应用。 谈到数学素养的问题时,顾沛讲到自己已经成功地在南开大学开设了数学文化课程,他说,之所以开设这门课程正是为了克服数学教学中忽视数学文化的这一弊病。 那什么是数学素养呢?通俗地说,数学素养就是把所学的数学知识都排出或忘掉后剩下的东西。 “现实生活中,经常会

2、用到一些数学的思维去解决问题。这种解决问题的方法就是数学素养的一种体现。”微软公司招聘员工的一道考题。“一个屋里有50个人,每人带一条狗,其中部分是病狗。主人只能通过对其它狗的观察得知自己的狗是否是病狗,并在发现当天用枪打死自己的狗,第一天没有听到枪声,第二天没有听到枪声……直至第十天听到一片枪声,问屋里有多少病狗。”可是这道看似脑筋急转弯的题目其实是一道巧妙的数学应用题。正确的解答需要结合运用反证法和数学归纳法,答案的揭晓使每个人都能感觉到数学的奥妙。 下面十个具体形象的例子从不同的角度体现了数学文化和素养的魅力。   例一:芝诺悖论与无限——从初等数学到高等数学 很多人都听过芝诺悖论

3、中的“阿基里斯永远追不上乌龟”的问题,顾沛在分析这个问题时,指出这一悖论的症结在于混淆了有限与无限的问题。芝诺认为阿基里斯在追赶乌龟的过程中,首先要到达乌龟原先的位置A,而这时乌龟已经到了位置B,阿基里斯继续追赶则要先到达B,这时乌龟又到达了位置C,以此类推,阿基里斯似乎永远也追不上乌龟了,可是芝诺却忽视了一个问题,无限长度或时间的和,可能是有限的。 另一个与无限有关的是“有无限个房间的旅馆”问题,一个有无限个房间的旅馆客满后来了一个客人,应该怎样安排他?答案很简单,让原先住在1号房的客人搬进2号房,原先住在2号房的客人住进3号房,以此类推,让原先住在K号房的客人住进K+1号房,这样就空

4、出了1号房给新来的客人。同理,来了一个团的无穷个旅客,一万个团的无穷个旅客甚至无穷个团的无穷个旅客也应对自如了。在场的许多同学都有所领悟,给出了精彩的解答。 奇妙的数学,从有限到无限,不可能的也成了可能。   例二:海岸线的长度问题——分形与混沌 首先是分形问题。B.B.Mandelbrot发现英国的海岸线永远也无法测量,为什么呢?柯赫曲线的几何现象说明了这个问题。(组图略) 这样的一组图具有自相似性,在测量海岸线时,如果尺子的长度精确度不同,那么海岸线的形状就可以无限分形,当然无法准确测量了。正是这样一个问题,发展成了数学界一个非常重要的分支。 混沌问题。这个问题是E.N.Lorenz

5、在做天气预报中发现的。大家都知道的“蝴蝶效应”,也是一种混沌现象,由此可见,数学问题无处不在。例三:历史上的数学危机——数学的思想大解放  牛顿为了计算瞬时速度,创立了微积分学,可是贝克莱却对牛顿发难:无穷小作为一个量,究竟是否为0? 在算式  s/t=gt +1/2g(t)中,贝克莱质疑道:如果无穷小量等于0,则等号左端无意义,若不等于0,则右边的后一项不能随意取掉,因此,反驳贝克莱成了一个棘手的问题。 直到数百年后,柯西的极限理论的出现,“ξ-σ”语言的出现。才消除了这一危机。 由此可见,在数学中,知识的逻辑顺序与历史顺序有时是不同的。   例四:周髀算经与勾股定理——中国和世界数学

6、的骄傲  很多人都知道北京2008年举行奥运会,但2002年在北京举行的“国际数学家大会”,也是我国许多世界顶尖数学大师和政府争取来的荣誉。这次大会的会徽就选择了周髀算经中勾股定理证明的图形。  美国宇航局的一次寻找外星人的行动中,也带去了一个证明勾股图形的黄金制品,可见勾股定理的证明是世界的骄傲。至今勾股定理的证明已经多达380种了,而很多人,仍在探寻新的方法。   例五:蒲丰投针问题——什么是创新 1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于平行线距离的一半的针,让他们随意投放。事后,蒲丰对针落地的位

7、置进行统计,共投针2212枚,与直线相交的704枚,两者相处,正好等于圆周率。求圆周率是一个几何问题,而蒲丰却用概率的方法解决了,完全不相同的两个领域被神奇地联系起来,这就是某种意义上的创新。例六:变换的方法——化繁为简 上山问题一人早6:00从山脚A上山,晚18:00到山顶B;第二天,早6:00从B下山,晚18:00到A。问是否有一个时刻,这二天都在这一时刻到达同一点?数学表述:设,表示上山运动函数;,表示下山运动函数,而S表示A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。