欢迎来到天天文库
浏览记录
ID:14149550
大小:95.50 KB
页数:4页
时间:2018-07-26
《15.2.1 同底数幂的乘法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、§15.2.1同底数幂的乘法教学目标(一)教学知识点1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.(二)能力训练要求1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊──一般──特殊的认知规律.(三)情感与价值观要求体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神.教学重点正确理解同底数幂的乘法法则.教学难点正确理解和应用同底数幂的乘法法则.教学方法透思探究教学法:利用学生已有的知识、经验对所学内容进行自主探究、发现,在对新知识的再创造和再发现的活动中培养学生的探索创新
2、精神与创新能力.教具准备投影片(或多媒体课件).教学过程Ⅰ.提出问题,创设情境复习an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间所以计算机工作103秒可进行的运算次数为:1012×103.[师]1012×103如何计算呢?[生]根据乘方的意义可知1012×103=×(10×10×10)==1015.[师]很好,通过观察大家可以发现1012、1
3、03这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.Ⅱ.导入新课1.做一做出示投影片:计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)·(a·a)=a5=a3
4、+2.5m·5n=×=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述).[生]我们可以发现下列规律:(一)这三个式子都是底数相同的幂相乘.(二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议am·an等于什么(m、n都是正整数)?为什么?出示投影片[师生共析]am·an表示同底数幂的乘法.根据幂的意义可得:am·an=·==am+n于是有am·an=am+n(m、n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂
5、的乘法法则.[生]am表示n个a相乘,an表示n个a相乘,am·an表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得am·an=am+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.[例1]计算:(1)x2·x5(2)a·a6(3)2×24×23(4)xm·x3m+1[例2]计算am·an·ap后,能找到什么规律?3.例题讲解出示投影片[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1)、(2)、(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算2个同底数幂相乘,将其结果再
6、与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1·a6=a1+6=a7.(3)解:2×24×23=21+4·23=25·23=25+3=28.(4)解:xm·x3m+1=xm+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:am·an·ap=(am·an)·ap=am+n·ap=am+n+p;解法二:am·an·ap=am·(an·ap)=am·an+p=am+n
7、+p.解法三:am·an·ap=··=am+n+p.评析:解法一与解法二都直接应用了运算法则,同时还用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·…·amn=am1+m2+mn[师]太棒了.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.
此文档下载收益归作者所有