欢迎来到天天文库
浏览记录
ID:13849861
大小:203.00 KB
页数:6页
时间:2018-07-24
《高一数学上册课时达标检测10》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时达标检测(十五)直线与平面、平面与平面垂直的性质(习题课)一、选择题1.已知l,m,n为两两垂直的三条异面直线,过l作平面α与直线m垂直,则直线n与平面α的关系是( )A.n∥α B.n∥α或n⊂αC.n⊂α或n与α不平行D.n⊂α答案:A2.如图所示,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面ABCD.平面PAE⊥平面ABC答案:C3.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,m⊥β,则α⊥β;②若m∥α,m∥β,则α∥β;③若m⊥α,m∥β,则α⊥
2、β;④若异面直线m,n互相垂直,则存在过m的平面与n垂直.其中正确的命题是( )A.②③B.①③C.②④D.③④答案:D4.如图,在Rt△ACB中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点P∈l,当点P逐渐远离点A时,∠PCB的大小( )A.变大B.变小C.不变D.有时变大有时变小答案:C5.如图,在四面体DABC中,若AB=CB,AD=CD,E是AC的中点,则下面结论正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE答案:C二、填空题6.α,β是两个不同
3、的平面,m,n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.答案:若①③④,则②(或若②③④,则①)7.如图所示,沿直角三角形ABC的中位线DE将平面ADE折起,使得平面ADE⊥平面BCDE,得到四棱锥ABCDE.则平面ABC与平面ACD的关系是________.答案:平面ABC⊥平面ACD8.如图所示,平面ABC⊥平面ABD,∠ACB=90°,CA=CB,△ABD是正三角形,则二面角CBDA的平面角的正切值为________.答案:三、解答题9.如图,四棱锥PA
4、BCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.求证:(1)CE∥平面PAD;(2)平面EFG⊥平面EMN.证明:(1)法一:如图,取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH∥AB,EH=AB.又AB∥CD,CD=AB,所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形.所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.法二:如图,连接CF.因为F为AB的中点,所以AF=AB.又CD=AB,所以AF=CD.又AF∥CD,所以四边形AFCD为平行四边形.因此CF∥AD.又C
5、F⊄平面PAD,AD⊂平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊄平面PAD,PA⊂平面PAD,所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE⊂平面CEF,所以CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA.又AB⊥PA,所以AB⊥EF.同理可证AB⊥FG.又EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG,因此AB⊥平面EFG.又M,N分别为PD,PC的中点,所以MN∥CD.又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又MN⊂平面EMN,所以平面EFG⊥平面EMN.10.如图,AE
6、是半径为a的半圆,AC为直径,点E为A的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a.(1)证明:EB⊥FD;(2)求点B到平面FED的距离.解:(1)证明:∵FC⊥平面BED,BE⊂平面BED,∴EB⊥FC.又点E为A的中点,B为直径AC的中点,∴EB⊥BC.又∵FC∩BC=C,∴EB⊥平面FBD.∵FD⊂平面FBD,∴EB⊥FD.(2)如图,在平面BEC内过C作CH⊥ED,连接FH.则由FC⊥平面BED知,ED⊥平面FCH.∵Rt△DHC∽Rt△DBE,∴=.在Rt△DBE中,DE===a,∴CH===a.∵FB=a,BC=a,∴FC=2a.在平面
7、FCH内过C作CK⊥FH,则CK⊥平面FED.∵FH2=FC2+CH2=4a2+=a2,∴FH=a.∴CK===a.∵C是BD的中点,∴B到平面FED的距离为2CK=a.
此文档下载收益归作者所有