欢迎来到天天文库
浏览记录
ID:13750539
大小:38.00 KB
页数:5页
时间:2018-07-24
《基于双正交基字典学习的图像去噪方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、基于双正交基字典学习的图像去噪方法摘要:为了提高图像去除白高斯噪声的性能,利用超完备字典作为图像的稀疏表示。超完备字典的冗余性可以有效地表示图像的各种几何奇异特征。在贝叶斯框架下,以图像块的稀疏表示定义了全局图像先验概率模型,给出了最大后验概率模型下的优化图像去噪算法。超完备字典使用两个不同的正交基构成,给出了基于奇异值分解(svd)的优化字典计算方法。该方法充分利用正交基的特点,采用svd方法进行高效的字典学习。基于双正交基字典的去噪算法提高了图像去噪性能,实验结果证实了所提方法的有效性。关键词:图像去噪;字典学习;稀疏表示;奇异值分解;贝叶斯估计imageden
2、oisingmethodbasedondictionarylearningwithunionoftwoorthonormalbasesxiekai*,zhangfenschoolofinformationandmechanicalelectronicengineering,beijinginstituteofgraphiccommunication,beijing102600,chinaabstract:overcompletedictionarywasusedtorepresentanimagesparselyfortheimprovementofimagede
3、noisingperformance.thesparserepresentationmayrepresentefficientlythesingulargeometryoftheimageswiththeredundancyofover-completedictionary.globalimagepriormodelbasedonthesparserepresentationofimagepatcheswaspresentedinbayesianframework.thenmaximumaposterioriprobabilityestimatorfordenoisin
4、gimagewasconstructed.thedictionaryconsistedofthetwoorthonormalbases.amethodbasedonsingularvaluedecompositionwasusedtodictionarylearning.theorthonormalpropertywasmadeuseoftoupdatetheonechosenbasiseffectively.themethodcanimprovetheperformanceofimagedenoising.experimentsresultsshowthevalidi
5、tyofthemethod.overcompletedictionarywasusedtorepresentanimagesparselyinordertoimproveimagedenoisingperformance.thesparserepresentationmayrepresentefficientlythesingulargeometryoftheimageswiththeredundancyofover.completedictionary.globalimagepriormodelbasedonthesparserepresentationofimage
6、patcheswaspresentedinbayesianframework.thenmaximumaposterioriprobabilityestimatorfordenoisingimagewasconstructed.thedictionarywascomposedoftwoorthonormalbases.amethodbasedonsingularvaluedecompositionwasusedfordictionarylearning.theorthonormalpropertywasusedtoupdatetheonechosenbasiseffect
7、ively.themethodcanimprovetheperformanceofimagedenoising.theexperimentalresultsverifythevalidityofthemethod.keywords:imagedenoising;dictionarylearning;sparserepresentation;singularvaluedecomposition(svd);bayesianestimation图像去噪的主要目标就是把被污染噪声的图像恢复为原始图像。小波变换用于图像去噪是近十年来的主要研究方
此文档下载收益归作者所有