2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析

2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析

ID:13629882

大小:163.50 KB

页数:8页

时间:2018-07-23

2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析_第1页
2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析_第2页
2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析_第3页
2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析_第4页
2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析_第5页
资源描述:

《2017-2018学年高中数学苏教版选修2-3第3章 统计案例 单元测试含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、阶段质量检测(三) 统计案例       (考试时间:120分钟 试卷总分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.下列有关线性回归的说法①变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;②在平面直角坐标系中用描点的方法得到具有相关关系的两个变量的一组数据的图形叫做散点图;③线性回归直线得到具有代表意义的线性回归方程;④任何一组观测值都能得到具有代表意义的线性回归方程.其中错误的是________.解析:任何一组观测值并不都能得到具有代表意义的线性回归方程.答案:④2.下表是x与y之间的一组数据,则y关于x的线性回归直线必过点_______

2、_.x0123y1357解析:∵x==1.5,y==4,∴样本点的中心为(1.5,4),而回归直线必过样本点的中心,故必过(1.5,4).答案:(1.5,4)3.对两个变量y和x进行线性相关性检验,已知n是观察值组数,r是相关系数,且已知:①n=7,r=0.9533;②n=15,r=0.3012;③n=17,r=0.9991;④n=3,r=0.9950,则变量y和x具有线性相关关系的是________.(填序号)解析:判断变量y与x是否具有线性相关关系时,观察值组数n不能太小.若y与x具有线性相关性,则相关系数

3、r

4、≥0.75,故②④错.答案:①③4.由线性回归直线方程y∧=4.75x+157

5、,当x=28时,y∧为________.解析:将x的值代入回归直线方程得估计值y∧=4.75×28+157=290.答案:2905.一家保险公司调查其总公司营业部的加班情况,收集了10周中每周加班工作时间y(小时)与签发保险单数目x的数据如下表所示:x825215107055048092013503256701215y3.51.04.02.01.03.04.51.53.05.0已知用最小二乘法估计求出的线性回归方程的斜率为0.003585,则线性回归方程为______________________________________________________________________

6、__.解析:线性回归直线y∧=b∧x+a∧过样本中心点(,),故将,求出代入即可.答案:y∧=0.1182+0.003585x6.某班主任对全班50名学生进行了作业量多少的调查,数据如下表,则喜不喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为________.认为作业多认为作业不多合计喜欢玩电脑游戏189278不喜欢玩电脑游戏81523合计2624507.下列关于回归分析与独立性检验的说法正确的是________.(填序号)①回归分析和独立性检验没有什么区别;②回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系;③回归分析研究两个变量之间的相关关系,独立性检验

7、是对两个变量是否具有某种关系的一种检验;④独立性检验可以100%确定两个变量之间是否具有某种关系.8.如图,有5组数据对(x,y),去掉哪组数据后剩下的4组数据的线性相关程度最大________.9.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程y∧=b∧x+a∧,其中b∧=-2.现预测当气温为-4℃时,用电量的度数约为________.用电量y(度)24343864气温x(℃)181310-110.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表给出性别与吃零食的2

8、×2列联表:男女总计喜欢吃零食51217不喜欢吃零食402868合计454085试回答吃零食与性别有关系吗?(“有”或“没有”)________.11.变量x,y具有线性相关关系,当x的取值分别为8,12,14和16时,通过观测知y的值分别为5,8,9和11,若在实际问题中,y的预报值最大是10,则x的最大取值不能超过________.12.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份x1234用水量y4.5432.5由某散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是y∧=-0.7x+a∧,则该厂6月份的用水量约为________.13.为研究变量x和y的线

9、性相关关系,甲、乙两人分别作了研究,利用线性回归方程得到回归直线l1和l2,两人计算知x相同,y也相同,则l1与l2的位置关系是________.14.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r18表示变量Y与X之间的线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。