欢迎来到天天文库
浏览记录
ID:13513469
大小:1.21 MB
页数:9页
时间:2018-07-23
《2016-2018年三年高考数学(文)真题分类专题07 导数的应用含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2016-2018三年高考数学真题分项整理汇编考纲解读明方向考点内容解读要求常考题型预测热度1.导数与函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)理解选择题解答题★★★2.导数与函数的极(最)值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)掌握解答题★★★3.生活中的优化问题会利用导数解决某些实际问题掌握]选择题★☆☆分析解读 1.会利用导数研究
2、函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展92016-2018三年高考数学真题分项整理汇编2018年高考全景展示1.【2018年新课标I卷文】已知函数.(1)设是的极值点.求,并求的单调区间;(2)证明:当时,.【答案】(1)a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.详解:(1)f(x)的定义
3、域为,f′(x)=aex–.由题设知,f′(2)=0,所以a=.从而f(x)=,f′(x)=.当02时,f′(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)当a≥时,f(x)≥.设g(x)=,则当01时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时,.点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关
4、系以及证明不等式问题,在解题的过程中,首先要保证函数的生存权,先确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.2017年高考全景展示1.【2016高考四川文科】已知函数的极小值点,则=()(A)-4(B)-2(C)4(D)2【答案】D【解析】考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程的解,但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在附近,如果时,,时,则是极小值点,如果时,
5、,时,,则是极大值点,2.【2017浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是92016-2018三年高考数学真题分项整理汇编【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D.【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间.3.【2017课标1,文21】已知函数=ex(ex﹣a)﹣a2x
6、.(1)讨论的单调性;(2)若,求a的取值范围.【答案】(1)当,在单调递增;当,在单调递减,在单调递增;当,在单调递减,在单调递增;(2).【解析】92016-2018三年高考数学真题分项整理汇编(2)①若,则,所以.【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,有的正负,得出函数的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数极值或最值.4.【2017课标II,文21】设函数.(1
7、)讨论的单调性;92016-2018三年高考数学真题分项整理汇编(2)当时,,求的取值范围.【答案】(Ⅰ)在和单调递减,在单调递增(Ⅱ)【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对分类讨论,当a≥1时,,满足条件;当时,取,当0<a<1时,取,.试题解析:(1)令得当时,;当时,;当时,所以在和单调递减,在单调递增【考点】利用导数求函数单调区间,利用导数研究不等式恒成立92016-2018三年高考数学真题分项整理汇编【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函
8、数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.2016年高考全景展示1.【2016
此文档下载收益归作者所有