资源描述:
《2003年全国硕士入学统考数学(一)试题及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2003年全国硕士入学统考数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)=.【分析】型未定式,化为指数函数或利用公式=进行计算求极限均可.【详解1】=,而,故原式=【详解2】因为,所以原式=(2)曲面与平面平行的切平面的方程是.【分析】待求平面的法矢量为,因此只需确定切点坐标即可求出平面方程,而切点坐标可根据曲面切平面的法矢量与平行确定.【详解】令,则,,.设切点坐标为,则切平面的法矢量为,其与已知平面平行,因此有18,可解得,相应地有故所求的切平面方程为,即.(3)设,则=1.【
2、分析】将展开为余弦级数,其系数计算公式为.【详解】根据余弦级数的定义,有===1.(4)从的基到基的过渡矩阵为.【分析】n维向量空间中,从基到基的过渡矩阵P满足[]=[]P,因此过渡矩阵P为:P=[[.【详解】根据定义,从的基到基的过渡矩阵为P=[[.18=(5)设二维随机变量(X,Y)的概率密度为则.【分析】已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率,一般可转化为二重积分=进行计算.【详解】由题设,有=y1DO1x(6)已知一批零件的长度X(单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的
3、平均值为40(cm),则的置信度为0.95的置信区间是.(注:标准正态分布函数值【分析】已知方差,对正态总体的数学期望进行估计,可根据,由确定临界值,进而确定相应的置信区间.【详解】由题设,,可见于是查标准正态分布表知18本题n=16,,因此,根据,有,即,故的置信度为0.95的置信区间是.二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(A)一个极小值点和两个极大值点.(B)两个极小值
4、点和一个极大值点.(C)两个极小值点和两个极大值点.(D)三个极小值点和一个极大值点.[C]yOx【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的点有3个,而x=0则是导数不存在的点.三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).(2)设
5、均为非负数列,且,,,则必有(A)对任意n成立.(B)对任意n成立.(C)极限不存在.(D)极限不存在.[D]【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B);而极限是型未定式,可能存在也可能不存在,举反例说明即可;极限属型,必为无穷大量,即不存在.【详解】用举反例法,取,,18,则可立即排除(A),(B),(C),因此正确选项为(D).(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则(A)点(0,0)不是f(x,y)的极值点.(B)点(0,0)是f(x,y)的极大值点.(C)点(
6、0,0)是f(x,y)的极小值点.(D)根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.[A]【分析】由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】由知,分子的极限必为零,从而有f(0,0)=0,且充分小时),于是可见当y=x且充分小时,;而当y=-x且充分小时,.故点(0,0)不是f(x,y)的极值点,应选(A).(4)设向量组I:可由向量组II:线性表示,则(A)当时,向量组II必线性相关.(B)当时,
7、向量组II必线性相关.(C)当时,向量组I必线性相关.(D)当时,向量组I必线性相关.[D]【分析】本题为一般教材上均有的比较两组向量个数的定理:若向量组I:可由向量组II:线性表示,则当时,向量组I必线性相关.或其逆否命题:若向量组I:可由向量组II:线性表示,且向量组I线性无关,则必有.可见正确选项为(D).本题也可通过举反例用排除法找到答案.【详解】用排除法:如,则,但线性无关,排除(A);,则可由线性表示,但线性无关,排除(B);,可由线性表示,但线性无关,排除(C).故正确选项为(D).(5)设有齐次线性方程组Ax=0和B
8、x=0,其中A,B均为矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)秩(B);18②若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(A)=秩(B),则Ax