欢迎来到天天文库
浏览记录
ID:13292829
大小:949.00 KB
页数:25页
时间:2018-07-21
《[状元桥]2016届高三数学(文)二轮复习教师用书:专题十一 空间点、直线、平面之间的位置关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题十一 空间点、直线、平面之间的位置关系(见学生用书P67)(见学生用书P67)1.空间两直线有相交、平行、异面三种位置关系.2.线面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.线面平行性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.3.线面垂直判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.4.面面平行判定定理:一个平面内的两条相交直线与另一个平面都平行,则这两个平面平行.面面平行性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交
2、线平行.5.面面垂直判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.面面垂直性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(见学生用书P68)考点一 平面的基本关系考点精析1.空间中,两条直线有相交、平行、异面三种位置关系.2.直线与平面的位置关系有:直线在平面上、直线与平面相交、直线与平面平行.3.两个不同平面的位置关系有:相交、平行.例1-1(2015·广东卷)若直线l1和l2是异面直线.l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.
3、l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交考点:空间中直线与直线之间的位置关系.分析:根据条件确定相应的位置关系,再对照选项确定答案.解析:若l1,l2与l都不相交,则l1∥l2与直线l1和l2是异面直线矛盾,所以选项A错误.若l1∥l,l2与l相交,则l1与l2异面.若l1,l2与l都相交,则l1与l2异面或相交.故l至少与l1,l2中的一条相交,故选D.答案:D点评:本题考查了空间中直线与直线的位置关系,考查了空间想象能力,属于中档题.例1-2(2015·北京卷)如图,在三棱锥V-ABC
4、中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.考点:直线与平面平行的判定,平面与平面垂直的判定和性质,三棱锥的体积等.分析:(1)利用线面平行的判定定理证明;(2)利用面面垂直的性质定理与判定定理证明;(3)利用等体积变换法将其转化为三棱锥C-VAB的体积求解.解析:(1)因为O,M分别为AB,VA的中点,所以OM∥VB.又因为MO⊂平面MOC且VB⊄平面MOC,所以VB∥平面MO
5、C.(2)因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=,所以AB=2,OC=1,所以等边三角形VAB的面积S△VAB=.又因为OC⊥平面VAB,所以三棱锥C-VAB的体积等于×OC×S△VAB=.又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为.点评:本题考查了直线与平面平行的判定,平面与平面垂直的判定和性质,等体积法求三棱锥的体积等知识,考查了空间想象
6、能力和推理论证能力.规律总结空间线面位置关系的判定问题是历年高考的热点问题,这类问题难度不大,以容易题或中档题为主,主要是选择、填空题.解决翻折问题的注意事项:(1)解决与翻折有关的几何问题的关键是搞清翻折前后哪些量改变、哪些量不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口.(2)把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥,从而把问题转化到我们熟悉的几何体中去解决.变式训练【1-1】(2015·湖北卷)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则( )A.p是q
7、的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件解析:l1,l2是异面直线说明l1,l2既不平行,也不相交,而l1,l2不相交时,l1,l2可能平行,不一定异面,∴p是q的充分不必件条件.答案:A考点二 空间直线、平面位置关系的证明考点精析1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行;(2)利用平行四边形进行转换;(3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明.2.证明线面平行的常用方法
8、(1)利用线面平行的判定定理,把证明线面平行转化为证明线线平行;(2)利用面面平行的性质定理,把证明线面平行转化为证明面面平行.3.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为
此文档下载收益归作者所有