2、em,itcanbeusedtocalculatethenumberof spanningtrees foragivengraph.TheLaplacianmatrixcanbeusedtofindmanyotherpropertiesofthegraph. Cheeger'sinequality from Riemanniangeometry hasadiscreteanalogueinvolvingtheLaplacianmatrix;thisisperhapsthemostimportanttheoremin spe
3、ctralgraphtheory andoneofthemostusefulfactsinalgorithmicapplications.ItapproximatesthesparsestcutofagraphthroughthesecondeigenvalueofitsLaplacian.2.定义Givena simplegraph G with n vertices,itsLaplacianmatrix isdefinedas:,where D isthe degreematrix and A isthe adjace
5、lknormalizedLaplacianmatrix isdefinedas:Theelementsof aregivenby2.例子HereisasimpleexampleofalabeledgraphanditsLaplacianmatrix.LabeledgraphDegreematrixAdjacencymatrixLaplacianmatrix2.性质Foran(undirected)graph G anditsLaplacianmatrix L with eigenvalues·L issymmetric.
7、nonnegative).·Everyrowsumandcolumnsumof L iszero.Indeed,inthesum,thedegreeofthevertexissummedwitha"-1"foreachneighbor·Inconsequenc,becausethevector satisfies ·Thenumberoftimes0appearsasaneigenvalueintheLaplacianisthenumberof connectedcomponents inthegraph.·Thesma
8、llestnon-zeroeigenvalueof L iscalledthe spectralgap.·Thesecondsmallesteigenvalueof L isthe algebraicconnectivity (or Fiedlervalue)of G.·WhenGisk-regular