最新高考数学解题技巧大揭秘 专题 用空间向量法解决立体几何问题

最新高考数学解题技巧大揭秘 专题 用空间向量法解决立体几何问题

ID:13027539

大小:693.50 KB

页数:60页

时间:2018-07-20

最新高考数学解题技巧大揭秘  专题 用空间向量法解决立体几何问题_第1页
最新高考数学解题技巧大揭秘  专题 用空间向量法解决立体几何问题_第2页
最新高考数学解题技巧大揭秘  专题 用空间向量法解决立体几何问题_第3页
最新高考数学解题技巧大揭秘  专题 用空间向量法解决立体几何问题_第4页
最新高考数学解题技巧大揭秘  专题 用空间向量法解决立体几何问题_第5页
资源描述:

《最新高考数学解题技巧大揭秘 专题 用空间向量法解决立体几何问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题十四用空间向量法解决立体几何问题考问题14 用空间向量法解决立体几何问题 1.(2012·山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.[来源:学科网](1)求证:BD⊥平面AED;(2)求二面角FBDC的余弦值.(1)证明 因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,AD⊥BD,又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.(2)解 连接AC,由(1

2、)知AD⊥BD,所以AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直,以C为坐标原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,不妨设CB=1,则C(0,0,0),B(0,1,0),D,F(0,0,1),因此=,=(0,-1,1).设平面BDF的一个法向量为m=(x,y,z),则m·=0,m·=0,所以x=y=z,取z=1,则m=(,1,1).由于=(0,0,1)是平面BDC的一个法向量,则cos〈m,〉===,所以二面角FBDC的余弦值为.对立体几何中的向量方法部分,主要以解答题的方式进行考查,而且偏重在第二问或者第三问中使

3、用这个方法,考查的重点是使用空间向量的方法进行空间角和距离等问题的计算,把立体几何问题转化为空间向量的运算问题.空间向量的引入为空间立体几何问题的解决提供了新的思路,作为解决空间几何问题的重要工具,首先要从定义入手,抓住实质,准确记忆向量的计算公式,注意向量与线面关系、线面角、面面角的准确转化;其次要从向量的基本运算入手,养成良好的运算习惯,确保运算的准确性.必备知识直线与平面、平面与平面的平行与垂直的向量方法设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α、β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4)(以下相同).(

4、1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3.(3)面面平行α∥β⇔μ∥v⇔μ=λv⇔a3=λa4,b3=λb4,c3=λc4.(4)面面垂直α⊥β⇔μ⊥ν⇔μ·v=0⇔a3a4+b3b4+c3c4=0.空间角的计算(1)两条异面直线所成角的求法设直线a,b的方向向量为a,b,其夹角为θ,则cosφ=

5、cosθ

6、=(其中φ为异面直线a,b所成的角).(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n

7、的夹角为θ,则有sinφ=

8、cosθ

9、=.(3)二面角的求法①利用向量求二面角的大小,可以不作出平面角,如图所示,〈m,n〉即为所求二面角的平面角.②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可以利用这两个平面的法向量的夹角来求.如图所示,二面角αlβ,平面α的法向量为n1,平面β的法向量为n2,〈n1,n2〉=θ,则二面有αlβ的大小为θ或πθ.空间距离的计算直线到平面的距离,两平行平面的距离均可转化为点到平面的距离.点P到平面α的距离,d=(其中n为α的法向量,M为α内任一点).必备方法1.空间角的范围(1)异面直线所成的角(θ):0<θ≤;(2)直线与平面所成

10、的角(θ):0≤θ≤;(3)二面角(θ):0≤θ≤π.2.用向量法证明平行、垂直问题的步骤:(1)建立空间图形与空间向量的关系(可以建立空间直角坐标系,也可以不建系),用空间向量表示问题中涉及的点、直线、平面;(2)通过向量运算研究平行、垂直问题;(3)根据运算结果解释相关问题.3.空间向量求角时考生易忽视向量的夹角与所求角之间的关系:(1)求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,而不是线面角的余弦;(2)求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计

11、算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果.                   【例1】►如图所示,已知直三棱柱ABCA1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.[审题视点]  [听课记录][审题视点]建系后,(1)在平面ABC内寻找一向量与共线;(2)在平面AEF内寻找两个不共

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。