欢迎来到天天文库
浏览记录
ID:12960302
大小:88.46 KB
页数:21页
时间:2018-07-19
《正态分布——概念、特征、广泛应用解读》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、正态分布——概念、特征、广泛应用一、概念 指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。 正态分布的由来 正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss(CarlFriedrichGauss,1777—1855)率先将其应用于天文学家研究,故正态分布又叫高斯分布。 高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家
2、,重要的贡献不胜枚举。 在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。但随着各种理论的深入研究,高斯理论的卓越贡献日显重要。 1.正态分布的重要性 正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。2.正态曲线及其性质3.标准正态曲线 标准正态曲线N(0,1)是一种特殊的正态分布曲线,以及标准正态总体在任一区间(a,
3、b)内取值概率。4.一般正态分布与标准正态分布的转化 由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。5.“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%
4、的犯错误的可能。二、正态分布的特征均数处最高以均数为中心,两端对称永远不与x轴相交的钟型曲线有两个参数:均数——位置参数,标准差——形状(变异度)参数。正态曲线下的面积分布有一定规律正态分布具有可加性三、正态分布的应用为什么说正态分布是概率论中最重要的分布? 答:正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;
5、以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。正态分布论(正态哲学)的主要内涵: 在联系自然、社会和思维的实践背景下,我们以正态分布的本质为基础,以正态分布曲线及面积分布图为表征(以后谈及正态分布及正态分布论就要浮现此图),进行抽象与提升,抓主其中的主要哲学内涵,归纳正态分布论(正态哲学)的主要内涵如下:
6、 1、正态分布整体论(静态) 正态分布启示我们,要用整体的观点来看事物。“系统的整体观念或总体观念是系统概念的精髓。”正态分布曲线及面积分布图由基区、负区、正区三个区组成,各区比重不一样。用整体来看事物才能看清楚事物的本来面貌,才能得出事物的根本特性。不能只见树木不见森林,也不能以偏概全。此外整体大于部分之和,在分析各部分、各层次的基础上,还要从整体看事物,这是因为整体有不同于各部分的特点。用整体观来看世界,就是要立足在基区,放眼负区和正区。要看到主要方面,还要看到次要方面,既要看到积极的方面还要看到事物消极的一面,看到事物前进
7、的一面还要看到落后的一面。片面看事物必然看到的是偏态或者是变态的事物,不是真实的事物本身。 2、正态分布重点论 正态分布曲线及面积分布图非常清晰的展示了重点,那就是基区占68.27%,是主体,要重点抓,此外95%,99%则展示了正态的全面性。认识世界和改造世界一定要住住重点,因为重点就是事物的主要矛盾,它对事物的发展起主要的、支配性的作用。抓住了重点才能一举其纲,万目皆张。事物和现象纷繁复杂,在千头万绪中不抓住主要矛盾,就会陷入无限琐碎之中。由于我们时间和精力的相对有限性,出于效率的追求,我们更应该抓住重点。在正态分布中,基区占
8、了主体和重点。如果我们结合20/80法则,我们更可以大胆的把正区也可以看做是重点。 3、正态分布发展论(动态) 联系和发展是事物发展
此文档下载收益归作者所有