资源描述:
《一次函数的应用教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一次函数的应用教案篇一:一次函数的应用教学设计一次函数的应用教学目标【知识与技能】学会用待定系数法求一次函数的解析式来解决实际问题,建立实际问题的函数模型.【过程与方法】经历对实际问题建立数学模型的过程,体验待定系数法的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数来解决实际问题、建立实际问题的函数模型的过程,使他们感受到数学的用途和与生活的紧密联系.2.让学生参与到教学活动中,提高学习数学及运用数学的积极性.学情分析学生学习了一次函数的图像和性质,用待定系数法确定一次函数解析式,已能够熟练的确定一次函数
2、的解析式,并运用相关性质解决问题。学生已经学习了方程和不等式解决实际问题,具备分析实际问题的能力。重点难点【重点】用一次函数知识来解决实际问题.【难点】建立实际问题的数学模型.教学过程一、创设情境,导入新知师:一次函数的图像有哪些特点,说明一次函数有哪些性质?(学生回答)师:我们在上节课学习了待定系数法,大家还记得是怎么用的吗?生:设出解析式,然后把已知点的坐标代入,解方程或方程组,解得系数值,进而得到解析式.师:很好!我们这节课就用它来解决一些实际问题.二、共同探究,获取新知教师多媒体出示.【例】为节约用水,某城市制定以下用水收费标
3、准:每户每月用水不超过8m时,每立方米收取1元外加0.3元的污水处理费;超过8m时,超过部分每立方米收取1.5元外加1.2元的污水处理费.设一户每月用水量为xm,应缴水费y元.(1)给出y关于x的函数关系式.(2)画出上述函数图象.(3)该市一户某月若用水量为x=5m或x=10m时,求应缴水费.(4)该市一户某月缴水费26.6元,求该户这月用水量.33333师:你能写出y与x的函数关系式吗?学生讨论后回答.生:用水量超过8m时与不超过8m时计算方法是不同的,所以要分类讨论.当不超过8m时,每立方米收费为(1+0.3)元;当超过8m时,
4、超过部分每立方米收费(1.5+1.2)元.教师提示:应分段表示,我们把这样的函数叫做分段函数,各个函数要注明取值范围.师:应该怎样分情况讨论呢?学生思考,讨论.师:用水量不超过8m和超过8m时的收费方法是不同的,但是应怎样分段呢?生:分为0≤x≤8和x8两段.师:哪位同学能写出这两种情况下的函数解析式?学生举手.教师找一名学生板演,然后集体订正得到:y=师:很好!你们能画出它的图象吗?生:能.教师找一名学生板演,其余同学在下面画,最后讨论纠正得到:3333333师:若一户某月的用水量为5m,你怎样求他应该缴多少水费?生:因为58,所以
5、把x=5代入第一个式子.师:对,你们求一下是多少?学生计算后回答.师:若一用户缴了26.6元的水费,你能算出这户人家的用水量吗?生:能.师:你是怎样计算的?生:因为26.61.3×8,所以用水量超过了8m,把y=26.6代入第二个式子,求出x.师:对,现在请大家具体算一下.学生计算后回答.生:2.7x-11.2=26.6,解得x=14,即这户本月用水14m.三、练习新知教师多媒体出示:例2、为了缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示。(1)根据图象,请分别求出当0≤x≤
6、50和x>50时,y与x的函数解析式;(2)请回答:当每月用电量不超过50度时,收费标准是__________;当每月用电量超过50度时,收费标准是_____________.33四、课堂小结师:本节课我们学习了什么内容?学生回答,教师总结:1.知道分段函数的概念与特征.2.会作分段函数的图象.3.对于实际问题,初步了解如何根据函数解析式和图象描出它的现实意义.教学反思本节课介绍了分段函数,分段函数在实际生活中经常用到,因为一个函数不是在所有的自变量可以取到的范围内可以通用,所以经常需要对自变量的范围分段讨论对应的函数.分段函数的画法
7、就是分别画出各个适用范围的一段.通过本节课的学习让学生进一步理解自变量的取值范围的意义,在做题特别是解应用题时养成分情况讨论的习惯和意识.篇二:一次函数的应用教学设计反思教学设计反思本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。一、有效的“复习回顾”学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。二、有效的“新知探究”根据实际的问题
8、情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。三、有效的“拓展延伸”设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次