导数的几何意义教案

导数的几何意义教案

ID:12628273

大小:31.50 KB

页数:14页

时间:2018-07-18

导数的几何意义教案_第1页
导数的几何意义教案_第2页
导数的几何意义教案_第3页
导数的几何意义教案_第4页
导数的几何意义教案_第5页
资源描述:

《导数的几何意义教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、导数的几何意义教案篇一:导数的几何意义教学设计导数的几何意义本节课教学指导思想与理论依据:微积分是人类思维的伟大成果之一,是人类经历了2500多年震撼人心的智力奋斗的结果,它开创了向近代数学过渡的新时期.它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分核心概念之一,它有极其丰富的实际背景和广泛的应用。本节教材选自人教A版数学选修2-2第1章“导数及其应用”第一节1.1.3“导数的几何意义”,是学生在学习了瞬时变化率就是导数之后的内容,通过这部分内容的学习,可以帮助学生更好的理解导数的概念及导数是研究函数的单调性、变化快慢和极值等性质最有效的工具,是本章的关键内容

2、。《新课程标准》要求,微积分教学“返璞归真”,把极限、连续、瞬时速度等概念,建立在朴素理解的基础上,直接由变化率问题得到导数的概念,进而研究导数的几何意义(图形上的直观体现)及导数在研究函数性质中的应用。本节内容按照先突破一般曲线的切线定义(割线无限逼近的确定位置上的直线就是该点处的切线);再结合旧知识“平均变化率表示割线的斜率”,学生对照动画探究“割线逼近切线→割线的斜率逼近切线的斜率→切线的斜率对应该点处的瞬时变化率即导数”的线索展开,从近似过渡到精确,通过图形直观逼近的方法消除学生对极限的神秘感,通过将曲线一点处的局部“放大、再放大”的直观方法,形象而逼真地再现了“局

3、部以直代曲”背后的深刻内涵和哲学原理。学情分析:学生已经通过实例经历了由平均变化率到瞬时变化率刻画现实问题的过程,理解了瞬时变化率就是导数,体会了导数的思想和实际背景,已经具备一定的微分思想,但是对于导数在研究函数性质中有什么作用还不够理解,多数同学对此有相当的兴趣和积极性。学生在学习时可能会遇到以下困难,比如从割线到切线的过程中采用的逼近方法,理解导数就是曲线上某点的斜率等等。教法分析:本节课采用教师引导与学生自主探究相结合,交流与练习相穿插的活动课形式,以学生为主体,教师创设和谐、愉悦的环境及辅以适当的引导。同时,利用多媒体形象动态的演示功能提高教学的直观性和趣味性,以

4、提高课堂效率。教学中注重数形结合,从形的角度对概念理解和运用。在这个过程中培养学生分析解决问题的能力,培养学生讨论交流的合作意识。学法指导:借助多媒体技术,通过设计环环相扣的探究问题,创设丰富的教学情境,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。引导学生动手操作,指导学生讨论交流从而发现规律,培养学生探究问题的习惯和意识以及勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。使学生充分经历“探索感知——讨论归纳——发现新知——应用新知解释现象”这一完整的探究活动,以获得理智和情感体验,让学生感受到数学知识的产

5、生是水到渠成的。学生自主探索、动手实践、合作交流的学习方式,体现在整个教学过程中。教案导数的几何意义教学流程篇二:导数的几何意义教案(后附教学反思)海口市2009年高中数学课堂教学优质课评比教学实录1.1.3导数的几何意义李明(湖南师大附中海口中学)12月4日于海南华侨中学一、创设情境、导入新课师:上节课我们学习了导数的概念,请回答:函数在x?含义?生:函数在x?x0处的导数f'(x0)的x0处的瞬时变化率.f/?x0??limf?x0??x??f(x0)?y?lim?x?0?x?x?0?x师:那么,用定义求导数分哪几个步骤?同学们可参考教材第6页例1.?yf?x0

6、??x??f(x0)?生:第一步:求平均变化率;?x?x?ylim第二步:求瞬时变化率,即f?x0???x?0?x/?y师:非常好,并且我们从求导数的步骤中发现:导数就是求平均变化率当?x?x趋近于O时的极限.明确了导数的概念之后,今天我们来学习导数的几何意义.二、引导探究、获得新知?y师:观察函数y=f(x)的图象,平均变化率在图中?x什么几何意义?生:平均变化率表示的是割线AB的斜率.有y2?y1?y师:是的,平均变化率的几何意义就是割线的斜率.?x师:请看教材第7页图1.1-2:P是一定点,当动点Pn沿着曲线y=f(x)趋近于点P时,观察割线PPn的变化趋势图.(多媒

7、体显示【动画1】)生:当点Pn沿着曲线y=f(x)趋近于点P时,割线PPn趋近于在P处的切线PT.师:看来这位同学已经预习了,他说的很对,“当点Pn沿着曲线y=f(x)逼近点P时,即?x?0,割线PPn趋近于确定的位置,这个确定位置上的直线PT称为点P处的切线.”这就是切线的概念.师:观察图①,曲线y=f(x)与它的割线有2个交点,与它的切线PT有1个交点.那么,能否根据直线与曲线交点个数来判断直线与曲线的位置关系?生:若曲线与直线有2个公共点,则它们相交;若曲线与直线有1个公共点,则它们相切.①②师:观察图②,请

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。