直线的倾斜角与斜率及直线方程(教师版)

直线的倾斜角与斜率及直线方程(教师版)

ID:12627117

大小:269.00 KB

页数:4页

时间:2018-07-18

直线的倾斜角与斜率及直线方程(教师版)_第1页
直线的倾斜角与斜率及直线方程(教师版)_第2页
直线的倾斜角与斜率及直线方程(教师版)_第3页
直线的倾斜角与斜率及直线方程(教师版)_第4页
资源描述:

《直线的倾斜角与斜率及直线方程(教师版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高一综合复习知识巩固点十四第十四讲直线的倾斜角与斜率及直线方程一、知识梳理:1.倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为。2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=tan;当直线的倾斜角等于900时,直线的斜率不存在过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:k=tan(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为900)。3.直线方程的五种形式确定直线方程需要有两个互相独立的条件。确定直线方程的形式很多,但必

2、须注意各种形式的直线方程的适用范围。名称方程说明适用条件斜截式y=kx+bk——斜率b——纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)——直线上已知点,k——斜率倾斜角为90°的直线不能用此式两点式=(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式+=1a——直线的横截距b——直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式Ax+By+C=0,,分别为斜率、横截距和纵截距A、B不能同时为零直线的点斜式与斜截式不能表示斜率不存在(垂直于x轴)的直

3、线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。4.几种特殊直线的方程:①过点垂直于x轴的直线方程为x=a;过垂直于y轴的直线方程为y=b②已知直线的纵截距为,可设其方程为;③已知直线的横截距为,可设其方程为;④过原点的直线且斜率是k的直线方程为y=kx⑤过直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程为:A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R)(除l2外)4高一综合复习知识巩固点十四二、基础检测:1.直线xtan+y=0

4、的倾斜角是(D)A.-B.C.D.2.直线xcosα+y+2=0的倾斜角范围是(B)A[,)∪(,]B[0,]∪[,π)C[0,]D[,]3.下列四个命题:①经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示;②经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(x2-x1)(x-x1)=(y2-y1)(y-y1)表示;③不经过原点的直线都可以用方程+=1表示;④经过定点A(0,b)的直线都可以用方程y=kx+b表示其中真命题的个数是(B)A.0B.1C.2D.3解析:对命题①④,

5、方程不能表示倾斜角是90°的直线,对命题③,当直线平行于一条坐标轴时,则直线在该坐标轴上截距不存在,故不能用截距式表示直线,只有②正确。4.若函数f(x)=log2(x+1)且a>b>c>0,则、、的大小关系是A、>>B、>>C、>>D、>>【解析】B把、、分别看作函数f(x)=log2(x+1)图像上的点与原点连线的斜率,对照草图可得答案5.已知直线(t为参数),则下列说法错误的是(  )A.直线的倾斜角为B.直线必经过点C.直线不经过第二象限D.当t=1时,直线上对应点到点(1,2)的距离为【解析】D.将直线方程化为,直线的

6、斜率为,直线的倾斜角为,将点代入,满足方程,斜率为正,截距为负,直线不经过第二象限6.已知、为轴上不同的两点,点的横坐标为,且,若直线的方程为,则直线的方程为4高一综合复习知识巩固点十四A.B.C.D.解析:A.直线、关于直线对称,P(1,2)7.在平面直角坐标系中,点的坐标分别为.如果是围成的区域(含边界)上的点,则的取值范围是[解析]:把看作区域上的点与点(-1,0)连线的斜率,结合图形可得结果为8.若三点共线,则的值等于______.9.过点A(2,1),且在x,y轴上截距相等的直线方程是x+y=3或y=x/210.已知点

7、A(-2,3),B(3,2),P(0,-2),过P点的直线与线段AB有公共点,求直线的斜率k的变化范围;[解析],,画出图形,数形结合可得结果三、典例导悟:11、求与两坐标轴围成三角形周长为9且斜率为-的直线方程.解:设直线的斜截式方程为y=-x+b,令x=0,y=b;令y=0,x=b,由

8、b

9、+

10、b

11、+,即(1++)

12、b

13、=9,得

14、b

15、=3,即b=3,所求直线的方程为y=-x3.12、已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线

16、方程解:∵P(2,3)在已知直线上,∴2a1+3b1+1=0,2a2+3b2+1=0∴2(a1-a2)+3(b1-b2)=0,即=-∴所求直线方程为y-b1=-(x-a1)∴2x+3y-(2a1+3b1)=0,即2x+3y+1=013、等腰直角三角形ABC的直角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。