2010高考数学题型数列——带答案

2010高考数学题型数列——带答案

ID:12487563

大小:2.42 MB

页数:21页

时间:2018-07-17

2010高考数学题型数列——带答案_第1页
2010高考数学题型数列——带答案_第2页
2010高考数学题型数列——带答案_第3页
2010高考数学题型数列——带答案_第4页
2010高考数学题型数列——带答案_第5页
资源描述:

《2010高考数学题型数列——带答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2010年高考解答题题型训练《数列》1.(2009浙江文)设为数列的前项和,,,其中是常数.(I)求及;(II)若对于任意的,,,成等比数列,求的值.解(Ⅰ)当,()经验,()式成立,(Ⅱ)成等比数列,,即,整理得:,对任意的成立,2.(2009北京文)设数列的通项公式为.数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.(Ⅰ)若,求;(Ⅱ)若,求数列的前2m项和公式;(Ⅲ)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.【解析】本题主要考查数列的概念、数列的基本性质

2、,考查运算能力、推理论证能力、分类讨论等数学思想方法.本题是数列与不等式综合的较难层次题.解(Ⅰ)由题意,得,解,得.∴成立的所有n中的最小整数为7,即.(Ⅱ)由题意,得,对于正整数,由,得.根据的定义可知当时,;当时,.∴.(Ⅲ)假设存在p和q满足条件,由不等式及得.∵,根据的定义可知,对于任意的正整数m都有,即对任意的正整数m都成立.当(或)时,得(或),这与上述结论矛盾!当,即时,得,解得.∴存在p和q,使得;p和q的取值范围分别是,..3.(2009山东卷文)等比数列{}的前n项和为,已知对任意的,点

3、,均在函数且均为常数)的图像上.(1)求r的值;(11)当b=2时,记求数列的前项和解:因为对任意的,点,均在函数且均为常数)的图像上.所以得,当时,,当时,,又因为{}为等比数列,所以,公比为,所以(2)当b=2时,,则相减,得所以【命题立意】:本题主要考查了等比数列的定义,通项公式,以及已知求的基本题型,并运用错位相减法求出一等比数列与一等差数列对应项乘积所得新数列的前项和.4.(2009全国卷Ⅱ文)已知等差数列{}中,求{}前n项和.解析:本题考查等差数列的基本性质及求和公式运用能力,利用方程的思想可求

4、解。解:设的公差为,则即解得因此5.(2009安徽卷文)已知数列{}的前n项和,数列{}的前n项和(Ⅰ)求数列{}与{}的通项公式;(Ⅱ)设,证明:当且仅当n≥3时,<【思路】由可求出,这是数列中求通项的常用方法之一,在求出后,进而得到,接下来用作差法来比较大小,这也是一常用方法。【解析】(1)由于当时,又当时数列项与等比数列,其首项为1,公比为(2)由(1)知由即即又时成立,即由于恒成立.因此,当且仅当时,6.(2009江西卷文)数列的通项,其前n项和为.(1)求;(2)求数列{}的前n项和.解:(1)由于

5、,故,故()(2)两式相减得故7.(2009天津卷文)已知等差数列的公差d不为0,设(Ⅰ)若,求数列的通项公式;(Ⅱ)若成等比数列,求q的值。(Ⅲ)若(1)解:由题设,代入解得,所以(2)解:当成等比数列,所以,即,注意到,整理得(3)证明:由题设,可得,则①②①-②得,①+②得,③③式两边同乘以q,得所以(3)证明:=因为,所以若,取i=n,若,取i满足,且,由(1)(2)及题设知,,且①当时,,由,即,所以因此②当时,同理可得因此综上,【考点定位】本小题主要考查了等差数列的通项公式,等比数列通项公式与前n

6、项和等基本知识,考查运算能力和推理论证能力和综合分析解决问题的能力。8.(2009全国卷Ⅱ理)设数列的前项和为已知(I)设,证明数列是等比数列(II)求数列的通项公式。解:(I)由及,有由,...① 则当时,有.....②②-①得又,是首项,公比为2的等比数列.(II)由(I)可得,数列是首项为,公差为的等比数列.,评析:第(I)问思路明确,只需利用已知条件寻找.第(II)问中由(I)易得,这个递推式明显是一个构造新数列的模型:,主要的处理手段是两边除以.总体来说,09年高考理科数学全国I、Ⅱ这两套试题都将数

7、列题前置,主要考查构造新数列(全国I还考查了利用错位相减法求前n项和的方法),一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。9.(2009辽宁卷文)等比数列{}的前n项和为,已知,,成等差数列(1)求{}的公比q;(2)求-=3,求解:(Ⅰ)依题意有由于,故又,从而5分(Ⅱ)由已知可得故从而10分10.(2009陕西卷文)已知数列满足,.令,证明:是等比数列;(Ⅱ)求的通项

8、公式。(1)证当时,所以是以1为首项,为公比的等比数列。(2)解由(1)知当时,当时,。所以。11.(2009湖北卷文)已知是一个公差大于0的等差数列,且满足,.(Ⅰ)求数列{}的通项公式:(Ⅱ)若数列{}和数列{}满足等式:=,求数列{}的前n项和。解(1)解:设等差数列的公差为d,则依题设d>0由a2+a7=16.得①由得②由①得将其代入②得。即(2)令两式相减得于是=-4=12.(2009福建

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。