欢迎来到天天文库
浏览记录
ID:12020645
大小:408.50 KB
页数:5页
时间:2018-07-15
《动点问题专题训练》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2011·北京阅读下面材料:小伟遇到这样一个问题:如图①所示,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.若梯形ABCD的面积为1,试求以AC、BD、AD+BC的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC、BD、AD+BC的长度为三边长的三角形(如图②所示).请你回答:图中△BDE的面积等于______.参考小伟同学思考问题的方法,解决下列问题
2、:如图所示,△ABC的三条中线分别为AD、BE、CF.(1)在图中利用图形变换画出并指明以AD、BE、CF的长度为三边长的一个三角形(保留画图痕迹);(2)△ABC的面积为1,则以AD、BE、CF的长度为三边长的三角形的面积等于______.(2011·荆州)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. Ⅰ型Ⅱ型投资金额x(万元)x5x24补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2(1)分别求y1和y2的函数解
3、析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.2011·河南)如图所示,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF.(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t
4、为何值时,△DEF为直角三角形?请说明理由.1.如图所示,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ.(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.2.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )3.(2011·成都)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm
5、,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过________s,四边形APQC的面积最小.4.(2011·宁波)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a.若Rt△ABC是奇异三角形,求a∶b∶c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点
6、,C、D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.5.(2011·山西)如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点,点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O-C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0),△MPQ的面积为S
7、.(1)点C的坐标为________,直线l的解析式为________________.(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.6.(2011贵州贵阳,25,12分)用长度一定的不锈钢材料设计成外观为矩形的框架(如
此文档下载收益归作者所有