欢迎来到天天文库
浏览记录
ID:11803684
大小:754.01 KB
页数:11页
时间:2018-07-14
《第一学期期末考试高三理科数学试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高三理科数学试卷一、选择题:1.已知集合,若,则实数的取值范围是A.B.C.D.2.函数的最小正周期是A.B.C.D.3.函数的单调递增区间是A.B.C.D.4.已知
2、
3、=3,
4、
5、=5,且,则向量在向量上的投影为A.B.3C.4D.55.若,则的值为A.B.C.1D.6.记等差数列的前项和为,若,且公差,则当取最大值时,A.4或5B.5或6C.6或7D.7或87.设m,n是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若m⊥,n∥,则m⊥n;②若∥,∥,m⊥,则m⊥;③若m∥,n∥,则m∥n;④若⊥,⊥,则∥.其中正确命题的序号是A
6、.①和②B.②和③C.③和④D.①和④8.若定义在R上的偶函数满足,且当时,,则函数的零点个数是A.多于4个B.4个C.3个D.二、填空题:9.记等差数列的前项和为,若成等比数列,则的值为.10..11.右图表示一个几何体的三视图及相应数据,则该几何体的体积是.12.如果过点(0,1)斜率为k的直线l与圆交于M、N两点,且M、N关于直线x+y=0对称,那么直线l的斜率k=__________;不等式组表示的平面区域的面积是.(二)选做题:第13、14、15题是选做题,考生只能选做二题,三题全答的,只计算前两题的得分.13.(坐标系与参数方程选做
7、题)曲线(为参数)上的点到两坐标轴的距离之和的最大值是.14.(不等式选讲选做题)不等式的解集是.15.(几何证明选讲选做题)如右图,⊙和⊙O相交于和,切⊙O于,交⊙于和,交的延长线于,=,=15,则=__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤16.(本小题满分13分)已知数列中,,数列中,.(Ⅰ)求数列通项公式;(Ⅱ)求数列通项公式以及前项的和.17.(本小题满分13分)已知中,,若的面积为,且(Ⅰ)求角的取值范围;(Ⅱ)设,求的值域.18.(本小题满分14分)BMEDCA如图,正方形所
8、在的平面与平面垂直,是和的交点,,且.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成的角的大小;(Ⅲ)求二面角的大小.19.(本小题满分14分)已知实数,函数.(Ⅰ)若函数有极大值32,求实数的值;(Ⅱ)若对,不等式恒成立,求实数的取值范围.20.(本小题满分14分)已知数列的前项和为,若是1与的等差中项.(Ⅰ)求证是等比数列,并求出的表达式;(Ⅱ)若,求的最大值及取得最大值时n的值.21.(本小题满分12分)设函数.(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围.澄海区2008-
9、2009学年度第一学期期末考试高三理科数学参考答案一、选择题CDBADCAB二、填空题9、或2;10、8;11、;12、1,;13、;14、;15、三、解答题16、(本小题满分13分)解:(1)∵∴-----------2分又∴是首项为3,公比为2的等比数列-----------4分∴-----------6分(2)∵∴=-----------8分∴-----------10分==-=-----------13分17、(本小题满分13分)解:(Ⅰ)设的三边分别是∵∴,即-----------2分又∴-----------4分∴---------
10、--6分∴----------7分(Ⅱ)-----------9分∵∴-----------11分∴-----------12分∴的值域是----------13分18、(本小题满分14分)解法一:(Ⅰ)∵四边形是正方形,BMEDCA-----------1分∵平面平面,,平面.-----------2分平面,.-----------3分又平面.-----------4分(Ⅱ)连结,平面,是直线与平面所成的角.-----------5分设,则,,-----------7分,.即直线与平面所成的角为.-----------9分(Ⅲ)过作于,连结.
11、平面,.HBMEDCA平面.是二面角的平面角.-------10分∵平面平面,平面..--------11分在中,,有.由(Ⅱ)所设可得,,...-----------13分∴二面角等于.-----------14分解法二:∵四边形是正方形,,∵平面平面,平面,-----------2分∴可以以点为原点,以过点平行于的直线为轴,分别以直线和为轴和轴,建立如图所示的空间直角坐标系.BMEDCAyxz设,则,是正方形的对角线的交点,.-----------4分(Ⅰ),,,,-----------6分平面.-----------7分(Ⅱ)平面,为平面
12、的一个法向量,,..∴直线与平面所成的角为.-----------10分(Ⅲ)设平面的法向量为,则且,且.即取,则,则.-----------12分又
此文档下载收益归作者所有