欢迎来到天天文库
浏览记录
ID:11767592
大小:394.00 KB
页数:4页
时间:2018-07-13
《中考中的动态几何问题分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、中考中的动态几何问题分析类型之一探索性的动态题探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断。探索型问题一般没有明确的结论,没有固定的形式和方法,需要学生自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需要的结论或方法或条件,考察学生的分析问题和解决问题的能力和创新意识。1.(宜昌市)如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点,过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶
2、点E、F恰好分别在边BC、AC上.(1)△ABC与△SBR是否相似?说明理由;(2)请你探索线段TS与PA的长度之间的关系;(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.2..(南京市)如图,已知的半径为6cm,射线经过点,,射线与相切于点.两点同时从点出发,点以5cm/s的速度沿射线方向运动,点以4cm/s的速度沿射线方向运动.设运动时间为s.(1)求的长;(2)当为何值时,直线与相切?4类型之二存在性动态题存在性动态题运用几何计算进行探索的综合型问
3、题,要注意相关的条件,可以先假设结论成立,然后通过计算求相应的值,再作存在性的判断.3..(河南)如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③
4、在运动过程中,当△MON为直角三角形时,求t的值.4.(湖州市)已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.45.(白银市)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿
5、x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是__________,点C的坐标是__________;(2)当t=秒或秒时,MN=AC;(3)设△OMN的面积为S,求S与t的函数关系式;(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.4类型之三开放性动态题开放性问题的条件或结论不给出,即条件开放或结论开放,需要我们充分利用自己的想像,大胆猜测,发现问题的结论,寻找解决问题的方法,正确选择
6、解题思路。解答开放性问题的思维方法及途径是多样的,无常规思维模式。开放性问题的条件、结论和方法不是唯一的,要对问题充分理解,分析条件引出结论,达到完善求解的目的。6.(苏州)如图,在等腰梯形中,,,,.动点从点出发沿以每秒1个单位的速度向终点运动,动点从点出发沿以每秒2个单位的速度向点运动.两点同时出发,当点到达点时,点随之停止运动.(1)梯形的面积等于;(2)当时,P点离开D点的时间等于秒;(3)当三点构成直角三角形时,点离开点多少时间?7.(福州)如图,已知△ABC是边长为6cm的等边三角形,动点P、
7、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?4
此文档下载收益归作者所有