欢迎来到天天文库
浏览记录
ID:11521992
大小:3.49 MB
页数:70页
时间:2018-07-12
《数字图像处理之图像分割》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六章图像分割主要内容6.1图像分割概述6.2阈值分割6.3边缘检测6.4区域分割6.5Hough变换检测法6.1图像分割概述图像分割是指通过某种方法,使得画面场景中的目标物被分为不同的类别。通常图像分割的实现方法是,将图像分为“黑”、“白”两类,这两类分别代表了两个不同的对象。因为结果图像为二值图像,所以通常又称图像分割为图像的二值化处理。图像分割是比较困难的事情,原因是画面中的场景通常是复杂的,要找出两个模式特征的差异,并且可以对该差异进行数学描述都是比较难的。6.1图像分割概述图像分析系统的基本构成如下图:
2、知识库表示与描述预处理分割低级处理高级处理中级处理识别与解释结果图像获取问题在该系统中,图像的增强和恢复可以看作预处理,其输入、输出均是图像,它是传统的图像处理的内容。而图像分割、特征提取及结构分析等称为图像识别,其输入是图像,输出是描述或解释。图像分割的目的把图像分解成构成它的部件和对象;有选择性地定位感兴趣对象在图像中的位置和范围。图像分割—引言从简到难,逐级分割控制背景环境,降低分割难度注意力集中在感兴趣的对象,缩小不相干图像成分的干扰。图像分割—引言图像分割的基本思路提取轮廓车牌定位车牌识别2.图像分割的
3、定义令集合R代表整个图像区域,对R的分割可看作将R分成N个满足以下五个条件的非空子集(子区域)R1,R2,…,RN:;对所有的i和j,i≠j,有Ri∩Rj=φ;对i=1,2,…,N,有P(Ri)=TRUE;对i≠j,有P(Ri∪Rj)=FALSE;对i=1,2,…,N,Ri是连通的区域。其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,φ代表空集。图像分割—引言图像分割的基本策略:把像素按灰度划分到各个物体对应的区域中去;确定存在于区域间的边界;先确定边缘像素点,然后将它们连接起来构成所需的边界;区域:像素的连通
4、集连通准则:4-连通8-连通4.图像分割的方法1)基于边缘的分割方法:先提取区域边界,再确定边界限定的区域。2)区域分割:确定每个像素的归属区域,从而形成一个区域图。3)区域生长:将属性接近的连通像素聚集成区域。4)分裂-合并分割:综合利用前两种方法,既存在图像的划分,又有图像的合并。分割对象分割对象图像分割将图像中有意义的特征或需要应用的特征提取出来1)按幅度不同来分割各个区域:幅度分割2)按边缘不同来划分各个区域:边缘检测3)按形状不同来分割各个区域:区域分割总结图像阈值分割是一种广泛应用的分割技术,利用图像
5、中要提取的目标物与其背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域(目标和背景)的组合,选取一个合适的阈值,以确定图像中每个象素点应该属于目标还是背景区域,从而产生相应的二值图像。阈值分割法的特点是:适用于物体与背景有较强对比的情况,重要的是背景或物体的灰度比较单一;而且总可以得到封闭且连通区域的边界。6.2.1图像二值化设原始图像f(x,y),以一定的准则在f(x,y)中找出一个合适的灰度值,作为阈值t,则分割后的图像g(x,y),可由下式表示:g(x,y)=1f(x,y)≥t0f(x,y)6、x,y)=1f(x,y)≤t0f(x,y)>t或6.2阈值分割另外,还可以将阈值设置为一个灰度范围[t1,t2],凡是灰度在范围内的象素都变为1,否则皆变为0,即g(x,y)=1t1≤f(x,y)≤t20其它某种特殊情况下,高于阈值t的象素保持原灰度级,其它象素都变为0,称为半阈值法,分割后的图像可表示为:g(x,y)=f(x,y)f(x,y)≥t0其它阈值分割图像的基本原理,可用下式表示:g(x,y)=ZEf(x,y)∈ZZB其它阈值阈值的选取时阈值分割技术得关键,如果过高,则过多的目标点被误归为背景;如果阈值7、过低,则会出现相反的情况。由此可见,阈值化分割算法主要有两个步骤:1)确定需要的分割阈值;2)将分割阈值与象素值比较以划分象素。在利用阈值方法来分割灰度图像时一般都对图像有一定的假设。基于一定的图像模型的。最常用的模型:假设图像由具有单峰灰度分布的目标和背景组成,处于目标或背景内部相邻象素间的灰度值是高度相关的,但处于目标和背景交界处两边的象素在灰度值上有很大的差别。如果一幅图像满足这些条件,它的灰度直方图基本上可看作是由分别对应目标和背景的两个单峰直方图混合构成的。简单直方图分割法6.2.1双峰法阈值(根据直方8、图来确定阈值)60年代中期,Prewitt提出了直方图双峰法,即如果灰度级直方图呈明显的双峰状,则选取两峰之间的谷底所对应的灰度级作为阈值。Z1ZiZtZjZk暗亮P背景目标图像灰度直方图双峰法选取阈值的缺点:会受到噪音的干扰,最小值不是预期的阈值,而偏离期望的值。改进办法:1)取两个峰值之间某个固定位置,如中间位置上。由于峰值代表的是区域内外的典型值,一般情况下,比选谷
6、x,y)=1f(x,y)≤t0f(x,y)>t或6.2阈值分割另外,还可以将阈值设置为一个灰度范围[t1,t2],凡是灰度在范围内的象素都变为1,否则皆变为0,即g(x,y)=1t1≤f(x,y)≤t20其它某种特殊情况下,高于阈值t的象素保持原灰度级,其它象素都变为0,称为半阈值法,分割后的图像可表示为:g(x,y)=f(x,y)f(x,y)≥t0其它阈值分割图像的基本原理,可用下式表示:g(x,y)=ZEf(x,y)∈ZZB其它阈值阈值的选取时阈值分割技术得关键,如果过高,则过多的目标点被误归为背景;如果阈值
7、过低,则会出现相反的情况。由此可见,阈值化分割算法主要有两个步骤:1)确定需要的分割阈值;2)将分割阈值与象素值比较以划分象素。在利用阈值方法来分割灰度图像时一般都对图像有一定的假设。基于一定的图像模型的。最常用的模型:假设图像由具有单峰灰度分布的目标和背景组成,处于目标或背景内部相邻象素间的灰度值是高度相关的,但处于目标和背景交界处两边的象素在灰度值上有很大的差别。如果一幅图像满足这些条件,它的灰度直方图基本上可看作是由分别对应目标和背景的两个单峰直方图混合构成的。简单直方图分割法6.2.1双峰法阈值(根据直方
8、图来确定阈值)60年代中期,Prewitt提出了直方图双峰法,即如果灰度级直方图呈明显的双峰状,则选取两峰之间的谷底所对应的灰度级作为阈值。Z1ZiZtZjZk暗亮P背景目标图像灰度直方图双峰法选取阈值的缺点:会受到噪音的干扰,最小值不是预期的阈值,而偏离期望的值。改进办法:1)取两个峰值之间某个固定位置,如中间位置上。由于峰值代表的是区域内外的典型值,一般情况下,比选谷
此文档下载收益归作者所有