欢迎来到天天文库
浏览记录
ID:11443537
大小:300.41 KB
页数:13页
时间:2018-07-12
《互联网推荐系统比较研究(论文译文)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、互联网规模和覆盖面的迅速增长带来了信息超载(informationoverload)的问题:过量信息同时呈现使得用户无法从中获取对自己有用的部分,信息使用效率反而降低。现有的很多网络应用,比如门户网站、搜索引擎和专业数据索引本质上都是帮助用户过滤信息的手段。然而这些工具只满足主流需求,没有个性化的考虑,仍然无法很好地解决信息超载的问题。推荐系统(recommendersystem)作为一种信息过滤的重要手段,是当前解决信息超载问题的非常有潜力的方法。推荐系统与以搜索引擎为代表的信息检索(inform
2、ationretrieval)系统最大的区别在于:1. 搜索注重结果(如网页)之间的关系和排序,推荐还研究用户模型(userprofile)和用户的喜好,基于社会网络(socialnetwork)进行个性化的计算(personalization);2. 搜索的进行由用户主导,包括输入查询词和选择结果,结果不好用户会修改查询再次搜索。而推荐是由系统主导用户的浏览顺序,引导用户发现需要的结果。高质量的推荐系统会使用户对该系统产生依赖。因此,推荐系统不仅能够为用户提供个性化的服务,而且能够与用户建立长期稳
3、定的关系,提高用户忠诚度,防止用户流失。推荐系统最典型的应用是在B2C电子商务领域,具有良好的发展和应用前景,商家根据用户的兴趣、爱好推荐顾客可能感兴趣或满意的商品(如书籍、音像等)。顾客的需求通常是不明确的、模糊的,如果商家能够把满足用户模糊需求的商品推荐给用户,就可以把用户的潜在需求转化为现实需求,从而达到提高产品销售量的目的。目前,几乎所有的大型电子商务系统,如Amazon、eBay等,都不同程度地使用了各种形式的推荐系统。其中Amazon研究电子商务的推荐系统长达10年时间.各种提供个性化服
4、务的Web站点,如电影、音乐网站,也需要推荐系统的大力支持。表1中按照应用领域分类列举了一些典型的商用推荐系统。在学术界,自20世纪90年代中期出现第一批关于协同过滤的文章[1−3]以来,推荐系统在电子商务、网络经济学和人类社会学等领域一直保持很高的研究热度并逐渐成为一门独立的学科。各种推荐算法涵盖包括认知科学、近似性理论、信息检索[4]、管理科学[5]、市场营销建模[6]等在内的众多研究领域[7].近几年来,国际学术界针对计算机网络信息整合的推荐相关的研究大量出现:1. ACM设立推荐系统年会(A
5、CMrecommendersystems);2. 计算机领域的人机交互、数据挖掘和机器学习顶级会议(SIGCHI、KDD、SIGIR、WWW等)中,推荐算法的文章逐年增加;3. 国际数据分析领域的高阶期刊(如IEEETrans.onKnowledgeandDataEngineering,ACMTrans.onInformationSystem等)刊载数篇推荐系统方面的文章信息领域做推荐系统领先的研究单位(学者)包括:纽约大学(AlexanderTuzhilin)、明尼苏达州立大学的GroupLens
6、研究小组(JosephA.Konstan,JohnRiedl等)、美国密歇根大学(PaulResnick)、卡内基梅隆大学(JaimeCallan)、微软研究院(RyenW.White)等。其中,美国密歇根大学在2006年开授了由PaulResnick主讲的推荐系统的课程。推荐系统,结合社会网络和语义网络的研究,面向互联网发展中出现的新问题和新技术需求,具有广泛的研究和应用前景。本研究调研了推荐系统在计算机网络和信息领域的主流研究与应用进展。本文第1节中给出推荐系统的形式化定义。第2节根据推荐算法的
7、类别分类陈述最新的学术进展。第3节讨论使用的数据集以及实验评测方法,对当前推荐系统的研究难点进行归纳并对比各种推荐方法的优、缺点。第4节对推荐系统有待深入的研究点和发展趋势进行初步预测。*1 推荐系统概念和形式化定义目前被广泛引用的推荐系统的非形式化概念是Resnick和Varian在1997年[8]给出的:“它是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程”。推荐有3个组成要素:推荐候选对象、用户、推荐方法。通用的推荐系统模型流程如图1所
8、示。用户可以向推荐系统主动提供个人偏好信息或推荐请求,或者用户不提供,而是推荐系统主动采集。推荐系统可以使用不同的推荐策略进行推荐,如将采集到的个性化信息和对象数据进行计算得到推荐结果,或者直接基于已建模的知识数据库进行推荐。推荐系统将推荐结果返回给用户使用。此外,文献[7]给出了推荐系统的形式化定义:设C是所有用户(user)的集合,S是所有可以推荐给用户的对象(object)的集合。实际中,C和S集合的规模通常很大,如上百万的顾客以及上亿种歌曲等。设效用函数u()
此文档下载收益归作者所有