北京--正弦函数图象的对称性(檀晋轩)casio

北京--正弦函数图象的对称性(檀晋轩)casio

ID:11142539

大小:325.50 KB

页数:7页

时间:2018-07-10

北京--正弦函数图象的对称性(檀晋轩)casio_第1页
北京--正弦函数图象的对称性(檀晋轩)casio_第2页
北京--正弦函数图象的对称性(檀晋轩)casio_第3页
北京--正弦函数图象的对称性(檀晋轩)casio_第4页
北京--正弦函数图象的对称性(檀晋轩)casio_第5页
资源描述:

《北京--正弦函数图象的对称性(檀晋轩)casio》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性教材:人教版全日制普通高级中学数学教科书(必修)第一册(下)授课教师:北京市第十九中学檀晋轩【教学目标】1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式(R)与(R)的几何意义,体会正弦函数的对称性.2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力.3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识.【教学重点】正弦函数图象的对称性及其代数表示形式

2、.【教学难点】用等式表示正弦函数图象关于直线对称和关于点对称.【教学方法】教师启发引导与学生自主探究相结合.【教学手段】计算机、图形计算器(学生人手一台).【教学过程】一、复习引入1.展示生活实例对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).2.复习对称概念初中我们已经学习过轴对称图形和中心对称图形的有关概念:轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合;中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合.73.作图观察请同学们用图形计算器画出正弦函数的图象(见右图),

3、仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形?4.猜想图形性质经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书)如何检验猜想是否正确?我们知道,诱导公式(R),刻画了正弦曲线关于原点对称,而(R),刻画了余弦曲线关于轴对称.从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明.今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题)二、探究新知分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性

4、质,第二阶段学生自主探索正弦曲线的中心对称性质.(一)对于正弦曲线轴对称性的研究第一阶段,实例分析——对正弦曲线关于直线对称的研究.1.直观探索——利用图形计算器的绘图功能进行探索请同学们在同一坐标系中画出正弦曲线和直线的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见右图),在直线两侧正弦函数值有什么变化规律?给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在左右对称取值时,正弦函数值相等.从直观上得到的猜想,需要从数值上进一步精确检验.2.数值检验——利用图形计算器的计算功能进行探索请同学们思考,对于上述猜

5、想如何取值进行检验呢?7教师组织学生通过合作的方式,对称地在左右自主选取适当的自变量,并计算函数值,对结果进行列表比较归纳.同时为没有思路的学生准备参考表格如下:…………给学生一定的时间进行思考、操作,根据情况进行指导并组织学生进行交流,然后请一组学生说明他们的研究过程.学生可以采用不同的数据采集方法,得到的结果如下列图表(表格中函数值精确到0.001):………-0.4160.0710.5400.87810.8780.5400.071-0.416…上述计算结果,初步检验了猜想,并可以把猜想用等式(R)表示.请同学们利用前面得到的数据,

6、用图形计算器描点画图(见下图),然后进行观察比较,思考点P和P′在平面直角坐标系中有怎样的位置关系?根据画图结果,可以看出,点P和P′关于直线7对称.这样,正弦曲线关于直线对称,可以用等式(R)表示.这样的计算是有限的,并受到精确度的影响,还需要对等式进行严格证明.3.严格证明——证明等式对任意R恒成立请同学们思考,证明等式的基本方法有哪些?所要证的等式左右两端有何特征?有可能选用什么样的公式?预案一:根据诱导公式,有.预案二:根据公式和,有.预案三:根据正弦函数的定义,在平面直角坐标系中,无论取任何实数,角和的终边总是关于轴对称(见

7、右图),他们的正弦值恒相等.这样我们就证明了等式对任意R恒成立,也就证明了正弦曲线关于直线对称.事实上,诱导公式也可以由等式推出,即这两个等式是等价的.因此,正弦曲线关于直线对称,是诱导公式(R)的几何意义.阶段小结:我们从几何直观获得启发,又通过数据计算进一步检验,得出正弦曲线关于直线对称可以用等式(R)表示,通过对这一等式的严格证明,证实了我们猜想的正确性.上述等式与诱导公式(R)的等价性,使我们对这一诱导公式有了新的理解.第二阶段,抽象概括——探索正弦曲线的其他对称轴.师生、生生交流,步步深入.问题一:正弦曲线还有其他对称轴吗?

8、有多少条对称轴?7对称轴方程形式有什么特点?可以发现,经过图象最大值点和最小值点且垂直于轴的直线都是正弦曲线的对称轴(教师利用课件演示),则对称轴方程的一般形式为:(Z).问题二:能用等式表示“正弦曲线关于直线(Z)对称

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。