渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears

渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears

ID:10952215

大小:230.00 KB

页数:14页

时间:2018-07-09

渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears_第1页
渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears_第2页
渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears_第3页
渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears_第4页
渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears_第5页
资源描述:

《渐开线齿轮的齿形齿向修整profile and longitudinal correction on ivbolute gears》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、目录1,基本思路2,渐开线直齿轮齿的负载特性3,防止啮合冲击4,齿形修形的目的和原理5,对直齿轮和斜齿轮分别进行齿形修形的建议6,影响齿宽负载分布的因素7,对直齿轮和斜齿轮分别进行齿向修形的建议8,现场经验简介负载齿轮的传动试验研究表明,随着齿轮进入啮合和脱离啮合时,由于角速度脉动的变化而增加了啮合冲击。啮合冲击,既使是制造很精确的齿轮也是难以避免的,因为这种冲击部分是由齿轮负载时的弹性变形引起的。啮合冲击的强度决定于负载量以及齿的精确度和壳体内传动齿轮与从动齿轮的相互位置,其他影响因素还有如:节线速度,齿轮惯性矩,齿面质量和润滑情况等。齿轮间的波动

2、引起齿轮自身和齿轮轴及壳体的振动从而产生噪音。只有当更高的速度和负载需求及传动噪音要求更高的情况非常紧急时,才能考虑采用通过齿形修形(齿顶,齿根修缘)减小啮合冲击。一旦实施了热后磨齿,那么就能承载更高的传动负载,在这种情况下就要求进行齿形修形。但是随着传动负载的增加,对齿向修形(或是鼓形修整)也就有了要求。以下将对齿向修形做更深的说明。虽然鼓形修整的主要目的是是齿宽的负载分布均匀,不过设计良好的鼓形修整还可以减小啮合冲击。换句话说,也就是抵消各种与良好齿轮轴承条件相斥的影响。两种类型的齿轮修形(齿形和齿向修形)的思路是不相同的。因此本论文将分别对两种

3、不同的修形模式进行说明。通常,实际的修形量都比较小,不管是齿顶修缘,齿根修缘还是端面修缘,通常在7.62∪到25.4∪之间。尽管修形量很小,可在修形设计和应用良好的情况下,这一点点的修形可以提高齿面的负载能力。然而,如果要求进行齿形修形以提高齿面负载力,那么必须修形确保达到最小制造精度。从振幅的序方面考虑,如果齿形误差接近齿形修形量时,那么对齿轮啮合性能的改善就还有所怀疑,特别是当修形和误差同时出现时。通常认为,如果要使用齿形和齿向修形的方法增加齿宽负载能力,那么必须确保在振幅上齿形误差比修形量小。本文给予的建议都是基于专业的斜齿硬化和磨齿经验提出的

4、。齿形的精确性符合AGMA的14-15质量的。然而,齿廓精确性可以确保更好的质量。1,基本思路齿轮进入啮合时的速度很大,因此负载转接时,自然地就会产生阻尼振动。对于直齿轮而言,承载负荷的齿数将由两个转为一个,又由一个转回两个,这样使得弹性变形更加复杂。虽然直齿轮和斜齿轮的啮合情况基本相同,可对于斜齿轮而言,相联系的齿轮副更多,且齿数更换的作用也更慢性些。对于相同的负载,传动速度和齿精确度,斜齿的修形量要比直齿的更小。更进一步的思考:斜齿不能立即使整个齿宽相接触,而是负载先由斜齿的顶端承载然后渐渐的传向整个齿宽面(见图表1).因此可见,齿向修形(鼓形修

5、整或齿端修缘)也是避免啮合冲击的有效方法。之后,我们将仅从静态观点,检测直齿轮啮合整个过程的负载情况。但是我们必须谨记啮合冲击指的是一个动态的过程,且其实际的负载力大于理论的、静态值;假定齿轮的振动形状是由齿速和惯性决控制的。2,渐开线直齿轮的负载特性当直齿轮啮合时,其齿间接触是由单对齿和双对齿轮交替进行地。将齿轮的接触线作为横坐标,如图表2,并垂直该轴作一纵坐标,这样我们就能表示出齿的啮合路径AD上任意一点所受的负载力。双对齿的接触路径在AB和CD上,而单对齿接触路径只是在BC之上。其实这些路径长度是由齿轮的尺寸规定的,AC和BD等同于基本节线。对

6、于完全精确和毫无变形的齿轮而言,,双接触区域上所受的负载正好是单接触区域负载的一半。这可用AFGHIKLD曲线表示。由于轮齿接触点的表面会变形和轮齿本身也会弯曲变形,所以齿宽的负载分布会发生变化。通过计算可得出负载力的AMNHIOPD曲线,负载传递的粗略方式为,啮合从A点开始,该点并承载40%的负载量,从双齿接触转向单齿接触的点的负载涨至60%。之后中央区域单独地承载100%的负荷。滚动齿轮副承载60%的负荷,之后在脱离啮合时其负载有降至40%。3.防止啮合冲击只要目前考虑的轮齿出现任何误差,其负载特性就会发生变化,尤其是那些刚性比较好的轮齿,即使是

7、轻微的误差也会产生巨大的影响。我们当前研究的主要发现是,当齿轮啮合时,由于轮齿会发生弹性变形,所以其中一个齿轮相对于另一个齿轮会旋转。我们将这一旋转表述为沿着啮合线的位移(见图表3).直齿轮的位移值用以下公式表示:单位:2.54∪(方程1)·=啮合线上的一般负载力()在齿轮进行啮合的时刻,从动齿的齿廓将会沿着啮合线上下移动,据图表3显示其移动量为。这一结果是由已啮合的齿轮副和齿轮副发生弹性变形引起的。缺少这种相关性将会引起啮合冲击。正如前面以提及的那样,齿形误差也会产生这相似的后果,因为齿形误差也表示了接触点的位移。在齿面研磨修形设备整合到MAAG机

8、器前,若要制造高能量和高速度的好、齿轮,通常采用以下实践方式以缓解当时的形势。A)减小误差范围,特别是齿形齿

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。