契贝晓夫不等式及其应用

契贝晓夫不等式及其应用

ID:10769752

大小:27.00 KB

页数:6页

时间:2018-07-08

契贝晓夫不等式及其应用_第1页
契贝晓夫不等式及其应用_第2页
契贝晓夫不等式及其应用_第3页
契贝晓夫不等式及其应用_第4页
契贝晓夫不等式及其应用_第5页
资源描述:

《契贝晓夫不等式及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、契贝晓夫不等式及其应用摘要:契贝晓夫不等式在概率论中有着广泛的应用.本文利用契贝晓夫不等式估算在某个对称区间内事件发生的概率,另外还论述了契贝晓夫不等式在定理证明中的应用,重点是在大数定律证明中的应用.关键词:随机变量数学期望方差大数定律契贝晓夫不等式通过学习概率论,我们知道一些事件发生的概率不能通过常规方法解决或者用常规方法解决起来很繁琐,更有一些定理的证明需要另辟捷径.下面我们就来研究一下利用契贝晓夫不等式来简洁快速地给出某些特殊事件发生的概率.1.相关定义我们要研究契贝晓夫不等式,首先要了解概率论中的几个相关

2、定义.下面先来看一下这几个定义.定义1:定义在样本空间Ω上,取值于实数域,且只取有限个或可列个值的变量ξ=ξ(ω),称作是一维(实值)离散型随机变量,简称离散型随机变量.定义2:若ξ(ω)是随机变量,F(x)是它的分布函数,如果存在函数P(x),使对任意的x,有F(x)=?蘩p(y)dy,则称ξ(ω)为连续型随机变量.6定义3:若离散型随机变量ξ可能取值为α,(i=1,2…),其分布列为p,(i=1,2…),则当

3、α

4、p<∞时,称ξ存在数学期望,并且数学期望Eξ=αp,如果

5、α

6、p=∞则称ξ的数学期望不存在.说明:

7、在概率论中频率可以逼近概率,即p=,再根据上述定义,可知数学期望的本质就是数学中的平均值.定义4:设ξ是一个连续型随机变量,密度函数为p(x),当?蘩

8、x

9、p(x)dx<∞时,称ξ的数学期望存在且Eξ=?蘩xp(x)dx.说明:连续型随机变量的数学期望在本质上和离散型随机变量是一样的.定义5:设ξ是一个随机变量,数学期望Eξ存在,如果E

10、ξ-Eξ

11、存在,则称E

12、ξ-Eξ

13、为随机变量ξ的方差.说明:方差在本质上反映了随机变量偏离数学期望的平均值.为了研究随机变量偏离数学期望小于任意正常数ε的概率,我们给出了下面的定义

14、.定义6:大数定律:若ξ,ξ,…ξ,…是随机变量序列,如果存在常数列α,α,…使对任意的实数ε>0,有p(

15、-α

16、<ε)=1成立,则称随机变量序列{ξ}服从大数定律.6如果随机变量ξ的数学期望Eξ存在,方差为Dξ,对于任意给定的正实数ε,我们有这样的感觉,方差Dξ与p(

17、ξ-Eξ

18、>ε)存在着某种关系,即p(

19、ξ-Eξ

20、>ε)随着Dξ的增大而增大,我们把这个感觉严格化就得到下面的契贝晓夫不等式.2.契贝晓夫不等式对任意的随机变量ξ,若Eξ=a,又Dξ存在,则对任意的正数ε,有P(

21、ξ-a

22、≥ε)≤.证明:(1)设ξ

23、是一个连续型随机变量,密度函数为p(x),则P(

24、ξ-a

25、≥ε)=?蘩p(x)dx≤?蘩p(x)dx≤?蘩(x-a)p(x)dx=(2)设ξ是一个离散型随机变量,ξ的分布列为p,则有P(

26、ξ-a

27、≥ε)=p(x)≤p(x)≤(ξ-a)p(x)=证毕契贝晓夫不等式的另一种形式:对任意的随机变量ξ,若Eξ=a,又Dξ存在,则对任意的正数ε,有P(

28、ξ-a

29、<ε)=1-P(

30、ξ-a

31、≥ε)>1-.6证明:1=P(Ω)=P(

32、ξ-a

33、≥ε)+P(

34、ξ-a

35、<ε)P(

36、ξ-a

37、≥ε∪

38、ξ-a

39、<ε)所以P(

40、ξ-a

41、<ε)=

42、1-P(

43、ξ-a

44、≥ε)>1-证毕说明:契贝晓夫不等式的转化形式在应用中比较灵活,有时比契贝晓夫不等式用起来更加方便.3.契贝晓夫不等式的应用(1)契贝晓夫不等式在概率估计中的应用.契贝晓夫不等式在概率估计中的应用主要包括两类:一是用于用常规方法不可以求出其准确概率的情况;二是用于虽然可以求出其准确概率,但我们只需要它的大致范围即可的情况.另外还有一点需要注意的是,在我们利用契贝晓夫不等式估计概率时,它所在的区间必须是对称区间.例1:设随机变量x的方差为2,估计P(

45、x-Ex

46、≥2)的概率.解:利用常规方法我们无法

47、求出P(

48、x-Ex

49、≥2)的概率.所以我们只有应用契贝晓夫不等式,即P(

50、x-Ex

51、≥2)≤=.6在契贝晓夫不等式给出的估计式中我们只需要知道方差Dξ及数学期望Eξ两个数字特征就够了,因而使用起来是比较方便的,但是也正因为它没有完整地用到随机变量的统计规律——分布函数或密度函数,所以一般说来它给出的估计是比较粗糙的且存在较大的误差.下面我们给出一个例题来说明这个问题.例2:若ξ是服从N[a,σ]分布的随机变量,求P(

52、ξ-a

53、≥3σ).解:利用契贝晓夫不等式得P(

54、ξ-a

55、≥3σ)≤=≈0.11然而它的准确解为P(

56、

57、ξ-a

58、≥3σ)=1-p(

59、ξ-a

60、≤3σ)=1-?蘩dx≈1-0.997≈0.003.比较这两者的结果,我们不难知道契贝晓夫不等式给出的估计的确粗糙一些.(2)契贝晓夫不等式在定理证明中的应用,特别是在大数定律证明中的应用.例3:利用契贝晓夫不等式可以证明:随机变量ξ的方差Dξ=0的充分必要条件是ξ取某个常数值的概率为1,即p(ξ=a)=1.证明:充分性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。